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Abstract. Let p be a prime number. We compute the trivial source character tables of fi-
nite Frobenius groups G with an abelian Frobenius complement H and an elementary abelian
Frobenius kernel of order p2. More precisely, we deal with infinite families of such groups which
occur in the two extremal cases for the fusion of p-subgroups: the case in which there exists
exactly one G-conjugacy class of non-trivial cyclic p-subgroups, and the case in which there
exist exactly p+ 1 distinct G-conjugacy classes of non-trivial cyclic p-subgroups.

1. Introduction

Let G be a finite group. Let p be a prime number dividing the order of G and let k be an al-
gebraically closed field of characteristic p. Permutation kG-modules and their direct summands
– called p-permutation modules or also trivial source modules – are omnipresent in the modular
representation theory of finite groups. They are, for example, elementary building blocks for the
construction and for the understanding of different categorical equivalences between block alge-
bras, such as splendid Rickard equivalences, p-permutation equivalences, source-algebra equiv-
alences, or Morita equivalences with endo-permutation source. A deep understanding of the
structure of these modules is therefore essential.

In this manuscript, we go back to ideas of Benson and Parker developed in [BP84]. Any trivial
source kG-module can be lifted to characteristic zero and affords a well-defined ordinary charac-
ter, which contains essential information about its structure. The trivial source character table
Trivp(G) of G at the prime p collects this information in a table; it is the species table or repre-
sentation table of the trivial source ring in the sense of [BP84, Ben84, Ben98]. More precisely, it
provides us with information about the character values of all the indecomposable trivial source
kG-modules and their Brauer quotients at all p′-conjugacy classes. See Subsection 2.3 for a
precise definition.

The present article is in fact part of a program aiming at gathering information about trivial
source modules of small finite groups and their associated trivial source character tables in a
database [BFLP24]. Isolated examples – calculated by Benson, and Lux and Pahlings – can
be found in [Ben84, Appendix] and [LP10, §4.10]. More recently, the first author, as part of
his doctoral thesis [Böh24], developed GAP4 [GAP] and MAGMA [BCP97] algorithms, which
could be used to compute the trivial source character tables of finite groups of order less than
100, as well as the trivial source character tables of various small (non-abelian) quasi-simple
groups. The latter algorithms rely, in particular, on the MeatAxe algorithm, first introduced
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by R. Parker. Meanwhile, in [BFL22] and [FL23] the authors and Farrell computed generic
trivial source character tables for the groups SL2(q) and PSL2(q) in cross characteristic, using
the generic character tables of these groups and theoretical methods involving block theory.

Using the data produced in [BFLP24] we identified some interesting families of finite groups,
of which we can calculate the trivial source character tables from a purely theoretical point of
view. In this regard, the main results of this article consist in the calculation of the trivial
source character tables at p of the following infinite families of Frobenius groups with an abelian
Frobenius complement H and elementary abelian Frobenius kernel of rank 2 :

(I) the family of all metabelian Frobenius groups of type (Cp ×Cp)⋊Cp2−1, in which there
is precisely one conjugacy class of subgroups of order p ;

(II) the family of all metabelian Frobenius groups of type (Cp ×Cp)⋊H in which there are
precisely p+ 1 conjugacy classes of subgroups of order p .

We note that groups of type (I) are isomorphic to AGL1(p
2), and any other Frobenius group of

type (Cp×Cp)⋊Cm in which there is precisely one conjugacy class of subgroups of order p is a
Frobenius subgroup of AGL1(p

2). Furthermore, if p = 2, then the only group of type (I) is the
alternating group A4, while groups of type (II) only occur for odd prime numbers p. For this
reason, we exclude the prime number 2 from all our calculations in this manuscript. We also
emphasise that contrary to [BFL22, FL23], it is not possible to use block theoretical arguments
in the present cases, because such groups possess only one p-block.

The paper is structured as follows. In Section 2 we introduce our notation and conventions.
In Section 3, first we review some properties of Frobenius groups and their ordinary and Brauer
characters. Then, we characterise metabelian Frobenius groups with elementary abelian Frobe-
nius kernel. The trivial source character tables are calculated in Section 4 for groups of type (I),
respectively in Section 5 for groups of type (II).

2. Preliminaries

2.1. General notation. Throughout, unless otherwise stated, we adopt the notation and con-
ventions below. We let p denote an odd prime number and G denote a finite group of order
divisible by p. We let (K,O, k) be a p-modular system, which we assume to be large enough for G
and its subgroups. In other words, O denotes a complete discrete valuation ring of characteristic
zero with field of fractions K = Frac(O) and residue field O is k = O/J(O) of characteristic p,
which we assume to be algebraically closed. For R ∈ {O, k}, RG-modules are assumed to be
finitely generated left RG-lattices, that is, free as R-modules, and we let R denote the trivial
RG-lattice.

Given a positive integer n, we let Cn denote the cyclic group of order n. We let Op(G)
denote the largest normal p-subgroup of G, Sylp(G) denote the set of all Sylow p-subgroups of
G, ccls(G) denote a set of representatives for the conjugacy classes of G, [G]p′ denote a set of
representatives for the p-regular conjugacy classes of G, and we let Gp′ := {g ∈ G | p ∤ o(g)}.
We recall that a group G with a normal subgroup N and a subgroup H is said to be the internal
semi-direct product of N by H, written G = N ⋊H, provided G = NH and N ∩H = {1}.

Given H ≤ G, an ordinary character ψ of H and χ an ordinary character of G, we write
IndGH(ψ) for the induction of ψ from H to G, ResGH(χ) for the restriction of χ from G to H,
χ◦ := χ|Gp′ for the reduction modulo p of χ, and 1H for the trivial character of H. Given N �G

and an ordinary character ν of G/N , we write InfGG/N (ν) for the inflation of χ from G/N to

G. Similarly, we write IndGH(L) for the induction of the kH-module L from H to G, ResGH(M)



Trivial source character tables of Frobenius groups of type (Cp × Cp) ⋊H 3

for the restriction of the kG-module M from G to H, and InfGG/N (U) for the inflation of the

k[G/N ]-module U from G/N to G. Moreover, if M is a kG-module, then we denote by φM the
Brauer character afforded byM , and if Q ≤ G then the Brauer quotient (or Brauer construction)

of M at Q is the k-vector space M [Q] := MQ
/∑

R<Q trQR(M
R), where MQ denotes the fixed

points of M under Q and trQR denotes the relative trace map. This vector space has a natural
structure of a kNG(Q)-module, but also of a kNG(Q)/Q-module, and is equal to zero if Q is
not a p-subgroup. Moreover, we use the abbreviation PIM to mean a projective indecomposable
module. We assume that the reader is familiar with elementary notions of ordinary and modular
representation theory of finite groups. We refer to [Lin18a, Web16, NT89, Hup98, CR90] for
further standard notation and background results.

2.2. Character tables and decomposition matrices. We let Irr(G), Lin(G), and IBrp(G)
denote the set of all irreducible K-characters of G, the set of linear characters of G, and the set
of all irreducible p-Brauer characters of G, respectively. We let

X(G) :=
(
χ(g)

)
χ∈Irr(G)
g∈ccls(G)

∈ K | Irr(G)|×|ccls(G)|

denote the ordinary character table of G and we let

X(G, p′) :=
(
χ(g)

)
χ∈Irr(G)
g∈[G]p′

∈ K | Irr(G)|×|[G]p′ |

denote the matrix obtained fromX(G) by removing the columns labelled by p-singular conjugacy
classes. We recall that for any χ ∈ Irr(G) there exist uniquely determined non-negative integers
dχφ such that χ◦ =

∑
φ∈IBrp(G) dχφφ . Then, for any φ ∈ IBrp(G), the projective indecomposable

character associated to φ is

(1) Φφ :=
∑

χ∈Irr(G)

dχφχ .

The p-decomposition matrix of G is then

Decp(G) :=
(
dχ,φ

)
χ∈Irr(G)
φ∈IBrp(G)

∈ K | Irr(G)|×| IBrp(G)|

and the p-projective table of G is

Φp(G) :=
(
Φφ(x)

)
φ∈IBrp(G)
x∈[G]p′

∈ K | IBrp(G)|×[G]p′ ,

which is the table of Brauer character values of the projective indecomposable kG-modules. It
follows from the definitions that

(2) Φp(G) = Decp(G)
t ·X(G, p′) .

Finally, the character table of finite cyclic groups will play an essential role in our calculations,
hence in this case we fix the following labelling of the irreducible characters and conjugacy classes.

Notation 2.1. If G := ⟨x | xm = 1⟩ ∼= Cm is a cyclic group of order m ≥ 1, then we let ζ ∈ K
denote a primitive m-th root of unity and we write the set of ordinary irreducible characters
of G as Irr(G) = {ξ1, . . . , ξm}, where

ξi(x
j) := ζ(i−1)j

for each 1 ≤ i ≤ m and each 0 ≤ j ≤ m− 1. This yields

X(Cm) :=
(
ξi(x

j−1)
)
1≤i≤m
1≤j≤m

=
(
ζ(i−1)(j−1)

)
1≤i≤m
1≤j≤m

.
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2.3. Trivial source character tables. Given R ∈ {O, k}, an RG-lattice M is called a trivial
source RG-lattice if it is isomorphic to an indecomposable direct summand of an induced lattice
IndGQ(R), where Q ≤ G is a p-subgroup. In addition, if Q is of minimal order subject to this
property, then Q is a vertex of M . It is clear, that up to isomorphism, there are only finitely
many trivial source RG-lattices.

It is well-known that any trivial source kG-module M lifts in a unique way to a trivial source

OG-lattice M̂ (see e.g. [Ben98, Corollary 3.11.4]) and we denote by χ
M̂

the K-character afforded

by M̂ . If M is a PIM, then χ
M̂

= Φφ, wehere φ is the Brauer character afforded by the unique

socle constituent of M .
We will study trivial source modules vertex by vertex. Hence, we denote by TS(G;Q) the set

of isomorphism classes of indecomposable trivial source kG-modules with vertex Q. We notice
that TS(G; {1}) is precisely the set of isomorphism classes of PIMs of kG and if M is a PIM of
kG, then χ

M̂
= Φφ where φ is the Brauer character afforded by the unique simple kG-module

in the socle of M .
A p-subgroup Q ≤ G is a vertex of a trivial source kG-module M if and only if M [Q] is

a non-zero projective kNG(Q)-module. Moreover, if this is the case, then the kNG(Q)-Green
correspondent f(M) of M is M [Q] (viewed as a kNG(Q)-module). Thus, there are bijections

TS(G;Q)
∼−→ TS(NG(Q);Q)

∼−→ TS(NG(Q); {1})
M 7→ f(M) 7→ M [Q]

where the inverse of the second map is given by the inflation from NG(Q) := NG(Q)/Q to
NG(Q). These sets are also in bijection with the set of p′-conjugacy classes of NG(Q).

Next, we let a(kG,Triv) denote the trivial source ring of kG, which is defined to be the subring
of the Grothendieck ring of kG generated by the set of all isomorphism classes of indecomposable
trivial source kG-modules. By definition, the trivial source character table of the group G at the
prime p, denoted Trivp(G), is the species table of the trivial source ring of kG. See e.g. [BP84].
However, we follow [LP10, Section 4.10] and consider Trivp(G) as the block square matrix defined
according to the following convention.

Convention 2.2. First, fix a set of representatives Q1, . . . , Qr (r ∈ Z≥1) for the conjugacy
classes of p-subgroups of G where Q1 := {1} and Qr ∈ Sylp(G). For each 1 ≤ v ≤ r

set NG(Qv) := NG(Qv)/Qv. For each pair (Qv, s) with 1 ≤ v ≤ r and s ∈ [NG(Qv)]p′ there is a
ring homomorphism

τGQv ,s
: a(kG,Triv) −→ K

[M ] 7→ φM [Qv ]
(s)

mapping the class of a trivial source kG-module M to the value at s of the Brauer charac-
ter φM [Qv ]

of the Brauer quotient M [Qv]. (Note that the group G acts by conjugation on the

pairs (Qv, s) and the values of τGQv ,s
do not depend on the choice of (Qv, s) in its G orbit.) Then,

for each 1 ≤ i, v ≤ r define a matrix

Ti,v :=
(
τGQv ,s([M ])

)
M∈TS(G;Qi)

s∈[NG(Qv)]p′

.

The trivial source character table of G at the prime p is then the block matrix

Trivp(G) :=
[
Ti,v

]
1≤i≤r
1≤v≤r

.

Moreover, we label the rows of Trivp(G) with the ordinary characters χ
M̂

instead of the isomor-

phism classes of trivial source kG-modules M themselves.
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In order to calculate the entries of Trivp(G), we will use the following two well-known lemmata,
the first of which describes the effect of the Brauer construction on characters of trivial source
modules.

Lemma 2.3. Let M be an indecomposable kG-module with a trivial source. Let g ∈ G and
write g = gp · gp′ with gp a p-element and gp′ a p

′-element. Then

χ
M̂
(g) = τG⟨gp⟩,gp′

([M ]) .

Proof. First note that since gp and gp′ commute, certainly gp′ ∈ CG(gp). Next, let L :=M [⟨gp⟩]
(seen as a kNG(⟨gp⟩)-module) and Mgp := Res

NG(⟨gp⟩)
CG(gp)

(L). Thus, it follows from [Ric96, Lemma

6.2] (or [BP84, 10.13. LEMMA]) that

χ
M̂
(g) = χ

M̂
(gpgp′) = χ

M̂gp
(gp′)

and on the other hand, it follows from the definitions that

τG⟨gp⟩,gp′
([M ]) = χ

L̂
(gp′) = (Res

NG(⟨gp⟩)
CG(gp)

(χ
L̂
))(gp′) = χ

M̂gp
(gp′) ,

proving the claim. □

The second lemma lets us describe certain blocks of the trivial source character table using
ordinary and Brauer characters.

Lemma 2.4. Let Trivp(G) = [Ti,v]1≤i,v≤r be the trivial source character table of the finite
group G at p. Then, the following assertions hold:

(a) Ti,v = 0 if Qv ̸≤G Qi, so in particular Ti,v = 0 for every 1 ≤ i < v ≤ r;

(b) Ti,i = Φp(NG(Qi)) = Decp(NG(Qi))
t ·X(NG(Qi), p

′) for every 1 ≤ i ≤ r ;

(c) Ti,1 =
(
χ
M̂
(s)

)
M∈TS(G;Qi),s∈[G]p′

for every 1 ≤ i ≤ r .

Proof. Assertion (a) is given by [LP10, Lemma 4.10.11(b)]. The first equality in assertion (b)
is given by [LP10, Lemma 4.10.11(c)] and the second equality follows from Equation (2) above.
Now, if v = 1 and 1 ≤ i ≤ r, then M [Qv] = M [{1}] = M , so τG{1},s([M ]) = φM (s) = χ

M̂
(s) for

every M ∈ TS(G;Qi) and every s ∈ [G]p′ , proving assertion (c). □

We refer the reader to the survey [Las23] and to our previous paper [BFL22, §2] for further details
and further properties of trivial source modules and trivial source character tables. However,
we mention the following result from the thesis of the first author, which will be crucial.

Proposition 2.5 ([Böh24, Proposition 3.1.15]). Assume G is a finite group with a normal
Sylow p-subgroup P � G such that G/P is abelian. Let Q be a p-subgroup of G. Then, we
have P ∩NG(Q) = Op(NG(Q)) ∈ Sylp(NG(Q)) and by the Schur–Zassenhaus Theorem, we may
choose a complement C of P ∩ NG(Q) in NG(Q). Let S be a simple kC-module, viewed as a
simple k[QC/C]-module via the canonical isomorphism QC/Q ∼= C. Set

L := Ind
NG(Q)
QC/Q (S) and U := Inf

NG(Q)

NG(Q)
(L) .

Then, the following assertions hold:

(a) L is a projective indecomposable kNG(Q)-module; and

(b) M := IndGNG(Q)(U) is indecomposable, hence a trivial source kG-module with vertex Q.

In particular, any element of TS(G;Q) can be obtained in this way.
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3. Background material on Frobenius groups

We start by reviewing basic definitions and results about the character theory of Frobenius
groups.

3.1. Frobenius groups. Recall that a finite groupG admitting a non-trivial proper subgroupH
such that

H ∩ gHg−1 = {1}
for each g ∈ G\H is called a Frobenius group with Frobenius complement H (or a Frobenius group
with respect to H). Frobenius proved that in such a group there exists a uniquely determined
normal subgroup F such that G is the internal semi-direct product of F by H (i.e. G = FH
and F ∩H = {1}); concretely,

F = {1} ∪
(
G \

⋃
g∈G

gHg−1

)
.

The normal subgroup F is called the Frobenius kernel of G. See e.g. [CR90, §14A]. In the sequel,
we write Frobenius groups with respect to H as F ⋊H.

We will use the following well-known properties of Frobenius groups.

Lemma 3.1. Let G be a Frobenius group with Frobenius complement H and Frobenius kernel F .
Then the following assertions hold.

(a) If H is abelian, then H is cyclic.

(b) The integer |H| divides |F | − 1. In particular |G : F | and |F | are coprime integers,
hence F is characteristic in G.

(c) For each f ∈ F \ {1} we have CG(f) ≤ F .

Proof. Assertion (a) is due to Burnside and follows directly from [Hup98, Lemma 16.7b)]. As-
sertion (b) is given by [Hup98, 16.6a) Lemma]. Assertion (c) is given by [CR90, (14.4) Proposi-
tion (i)]. □

3.2. Characters of Frobenius groups. The ordinary characters of Frobenius groups are well-
known and given by the following theorem.

Theorem 3.2 ([CR90, (14.4) Proposition]). Let G be a Frobenius group with Frobenius com-
plement H and Frobenius kernel F . Then

Irr(G) = {InfGG/F (ψ) | ψ ∈ Irr(G/F )} ⊔ {IndGF (ν) | ν ∈ T} ,

where T is a set of representatives for the orbits of the action of G by conjugation on Irr(F )\{1F }.

Notice that the first set consists of the irreducible characters of G which contain F in their ker-
nels, whereas the second set consists of those irreducible characters of G which do not contain F
in their kernels.

Lemma 3.3 ([Hup98, 18.7 Theorem (b)]). Let G be a Frobenius group with Frobenius comple-
ment H and Frobenius kernel F . Let ρH denote the regular character of H. If ν ∈ Irr(F )\{1F },
then

ResGH(Ind
G
F (ν)) = ν(1) · ρH .
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Proposition 3.4. Let G be a Frobenius group with cyclic Frobenius complement H ∼= Cm for
some integer m ≥ 2 and abelian Frobenius kernel F of order pr for some positive integer r ≥ 1.
Then the following assertions hold:

(a) Irr(G) = {χ1, . . . , χm+ pr−1
m

} where for each 1 ≤ i ≤ m

χi := InfGG/F (ξi)

with ξi ∈ Irr(Cm) as defined in Notation 2.1, and

{χm+1, . . . , χm+ pr−1
m

} = {IndGF (ν) | ν ∈ T}

where T is a set of representatives for conjugation action of G on Irr(F ) \ {1F } ;
(b) IBrp(G) = {φ1, . . . , φm} where φi := χ◦

i for each 1 ≤ i ≤ m ;

(c) Decp(G) is as given in Table 1.

φ1 φ2 φm−1 φm
χ1 1 0 0 0
χ2 0 1
χ3 0 0

0 0
1 0

χm 0 0 0 1
χm+1 1 1 1 1

χ
m+ pr−1

m
1 1 1 1

Table 1

Proof. Recall from Lemma 3.1 that gcd(m, p) = 1.

(a) First, it is clear from Theorem 3.2 that G has m pairwise distinct ordinary irreducible
characters which are inflated from G/F ∼= H ∼= Cm to G. Moreover,

| Irr(G)| = | Irr(G/F )|+ |{IndGF (ν) | ν ∈ T}|

= m+
|F | − 1

|H|
= m+

pr − 1

m

where the last-but-one equality holds by [Hup98, 18.7 Theorem (b)].

(b) It is well-known that | IBrp(G)| is equal to the number of p′-conjugacy classes of G. As
G is a semi-direct product of the normal p-subgroup F by the abelian p′-subgroup H,
clearly ccls(H) = H is a set of representatives of p′-conjugacy classes of G, proving that
| IBrp(G)| = |H| = m. Now, as the reductions modulo p of the m linear characters
χ1, . . . , χm of G are pairwise distinct linear Brauer characters, they already account for
all the irreducible Brauer characters of G. The claim follows.

(c) It is immediate from part (b) that the first m rows of Decp(G) are given by the identity

matrix of size m ×m. Let now χj ∈ Irr(G) with m + 1 ≤ j ≤ m + pr−1
m . By (a), there
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exists a character ν ∈ Irr(F ) \ {1F } such that χj = IndGF (ν). As Gp′ = H and is abelian,
we have

χ◦
j = (IndGF (ν))

◦ = ResGH(Ind
G
F (ν)) = ρH =

∑
ξ∈Irr(H)

ξ =
m∑
i=1

φi,

where the third equality follows from Lemma 3.3 and the last equality follows from (a)
and (b).

□

3.3. Frobenius groups of type (Cp×Cp)⋊H. In this article, the aim is to focus on Frobenius
groups G with cyclic Frobenius complement of order m and elementary abelian Frobenius kernel
of order p2 where p is an odd prime number. In particular, we will compute the trivial source
character tables Trivp(G) in the following two extremal cases: first the case, in which there is
precisely one G-conjugacy class of cyclic subgroups of order p (we will call this the maximal
fusion case); second, the case in which there are precisely p + 1 G-conjugacy classes of cyclic
subgroups of order p (we call this the minimal fusion case). In this subsection, we characterise
such groups.

Given integersm,n > 1, we denote by MetaFrob(m) the set of isomorphism classes of metabelian
Frobenius groups with Frobenius complement of order m and we set

MetaFrob(m,n) := {G ∈ MetaFrob(m) | |G| = mn}.
Note that Frobenius groups G with cyclic Frobenius complement of order m and elementary
abelian Frobenius kernel of order p2 comprise all elements of MetaFrob(m, p2) whose Frobenius
kernels are not cyclic.

It is known that the cardinality of MetaFrob(m,n) can be expressed in terms of the group of
units (Z/mZ)×, Euler’s totient function φ, and the prime factorization

n = pa11 · . . . · parr ,
where the positive integers p1, . . . , pr are assumed to be pairwise distinct prime numbers. For
convenience, we identify (Z/mZ)× with

E := {i ∈ Z | 0 < i < m and gcd(m, i) = 1}.
Moreover, for integers a and b coprime to m let d(a, b) denote the order of the subgroup
of (Z/mZ)× generated by a + mZ and b + mZ. Also, if 0 < v ∈ Z, let P (u, v) = 0 if u
is not a nonnegative integer and let P (u, v) denote the coefficient of xu in the power series

expansion of
∞∏
i=1

(1− xi)
−v

otherwise.

Proposition 3.5 ([BH98, Theorem 11.7.]). Let m,n > 1 be integers and let n = pa11 · . . . · parr
be the prime factorisation of n. Then,

|MetaFrob(m,n)| = 1

φ(m)

∑
e∈E

r∏
i=1

P

(
ai

d(e, pi)
,
φ(m)

d(e, pi)

)
.

Corollary 3.6. Let p be an odd prime number and let m > 1 be an integer such that m ∤ (p−1).
Then the following assertions hold:

(a) |MetaFrob(m, p2)| = 1;
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(b) if m = p2 − 1 then the unique element of MetaFrob(p2 − 1, p2) is the affine linear group
AGL1(p

2) and can be identified with the subgroup

G :=

{(
a 0
b 1

)
∈ GL2(Fp2) | a ∈ F×

p2
, b ∈ Fp2

}
of GL2(Fp2), which is a Frobenius group with Frobenius kernel and Frobenius complement

F :=

{(
1 0
b 1

)
∈ GL2(Fp2) | b ∈ Fp2

}
and H :=

{(
a 0
0 1

)
∈ GL2(Fp2) | a ∈ F×

p2

}
respectively;

(c) if p < m < p2 − 1 then the unique element of MetaFrob(m, p2) can be identified with the

subgroup G̃ = FH̃ = F ⋊ H̃ of G, where |H̃| = m.

Proof. (a) Using the notation of Proposition 3.5 we have n = p2, hence r = 1, a1 = 2, and
p1 = p. Thus, it follows from Proposition 3.5 that

|MetaFrob(m, p2)| = 1

φ(m)

∑
e∈E

P

(
2

d(e, p)
,
φ(m)

d(e, p)

)
.

By the definition of the function P , the above sum does not vanish if and only if d(e, p) ∈
{1, 2}. As the order of p+mZ in (Z/mZ)× is two (since m | p2 − 1 but m ∤ p− 1), the
case d(e, p) = 1 does not occur.

Now, we claim that d(e, p) = 2 if and only if e ≡ p (mod m) or e ≡ 1 (mod m). By
Lemma 3.1(b) we have m | p2 − 1, so p2 ≡ 1 (mod m). Hence, if e ≡ p (mod m) or
e ≡ 1 (mod m) then d(e, p) = 2 because ⟨p +mZ⟩ = {p +mZ, p2 +mZ}. Conversely,
if d(e, p) = 2 then |⟨p+mZ⟩| = 2. Hence, e+mZ cannot contribute to any new element
of ⟨p+mZ⟩ and it follows that e ≡ p (mod m) or e ≡ 1 (mod m).
Therefore, we have:

|MetaFrob(m, p2)| = 1

φ(m)
·
(
P

(
2

2
,
φ(m)

2

)
+ P

(
2

2
,
φ(m)

2

))
=

2

φ(m)
· P

(
1,
φ(m)

2

)
.

Finally, by [BH98, Remark 11.13.(C)], we obtain P
(
1, φ(m)

2

)
= φ(m)

2 , proving our asser-

tion.

(b) Assertion (b) is well-known and follows for example from [Jac12, Exercise 5.15.7].

(c) The group G̃ = F ⋊ H̃ is obviously a subgroup of G. Moreover, as H̃ < H and

G̃ \H̃ = {f · h̃ ∈ G̃ | f ∈ F \{1}, h̃ ∈ H̃} ⊂ G \H = {f ·h ∈ G | f ∈ F \{1}, h ∈ H},

it follows from the definition that F ⋊ H̃ is again a Frobenius group.
□

Proposition 3.7. Let G be a Frobenius group with Frobenius complement H ∼= Cm and Frobe-
nius kernel F ∼= Cp × Cp.

(a) The number of G-conjugacy classes of subgroups of G of order p equals 1 if and only
if m = (p+ 1) · gcd(p− 1,m).
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(b) If the number of G-conjugacy classes of subgroups of G of order p equals p+ 1, then H
is cyclic of order dividing p− 1.

Proof. Write F = ⟨x⟩ × ⟨y⟩ and H = ⟨h⟩. As F is elementary abelian of order p2, there are
precisely p+ 1 subgroups of F of order p, namely

Ri := ⟨x · yi⟩ (0 ≤ i ≤ p− 1) and Rp := ⟨y⟩,
and we let X := {R0, . . . , Rp}.

(a) First, suppose there is a unique G-conjugacy class of subgroups of G of order p. The
group G acts on the set X by conjugation. We deduce from the orbit-stabiliser theorem
that, for all C ∈ X,

p+ 1 = |Orb(C)| = |G : NG(C)| =
|G|

|NG(C)|
,

where Orb(C) denotes the orbit of C under the action of G. Hence,

(p+ 1) · |NG(C)| = |G| = p2 ·m.
Moreover, we know from Lemma 3.1(b) that m | (p+ 1) · (p− 1) (hence gcd(m, p) = 1),
and F ≤ NG(C), so p

2 | |NG(C)|. It follows that (p+1) | m, so m = (p+1) ·gcd(p−1,m)
and |NG(C)| = p2 · gcd(p− 1,m).

Conversely, assume that m = (p+1) ·gcd(m, p−1). Let C ∈ X. Since F ≤ NG(C), as
above, we can write |NG(C)| = p2 · b where b is a positive integer such that b | m. First,
we claim that b | (p− 1). Indeed, NG(C) acting by conjugation on C, we may consider
the induced group homomorphism

Θ : NG(C) −→ Aut(C) ∼= Cp−1, g 7→ cg

where cg : C −→ C, c 7→ gcg−1 is the automorphism of conjugation by g. Since C
is a subgroup of the Frobenius kernel F , for any c ∈ C \ {1} we have CG(c) ≤ F by
Lemma 3.1(c). Thus, ker(Θ) = F and

b =
|NG(C)|

|F |

∣∣∣ |Aut(C)| = p− 1.

Therefore, the orbit-stabiliser theorem yields

|Orb(C)| · |NG(C)| = |G| = p2 ·m
that is,

|Orb(C)| · b = m = (p+ 1) · gcd(m, p− 1) .

We deduce that (p + 1) | |Orb(C)|, so the only possibility is |Orb(C)| = p + 1, proving
our claim.

(b) Let C ∈ X. Since the number of G-conjugacy classes of subgroups of G of order p
equals p + 1, we have |Orb(C)| = 1 and NG(C) = G. As in part (a), the kernel of the
homomorphism

Θ : NG(C) −→ Aut(C), g 7→ cg
is F , implying that

m =
|G|
|F |

∣∣∣ |Aut(C)| = p− 1 .

□
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Remark 3.8. Notice that for the prime number 2 there is, up to isomorphism, only one Frobenius
group of type (C2 × C2) ⋊ Cm, namely the alternating group A4 = V4 ⋊ ⟨(1 2 3)⟩, where V4 is
the Klein-four group. Indeed, as m | (p2 − 1) = 3, the only possibility is m = 3, and the only
other non-abelian group of order 12 is the dihedral group of order 12, which does not have any
normal subgroup isomorphic to C2 × C2. The trivial source character table Triv2(A4) can be
found for example in [Böh24], or in [BFL22] through the isomorphism A4

∼= PSL2(3).

4. The maximal fusion case

We now turn to the computation of the trivial source character tables of metabelian Frobe-
nius group with Frobenius kernel F ∼= Cp × Cp and cyclic Frobenius complement H ∼= Cp2−1.
Recall from Corollary 3.6 that, up to isomorphism, there is only one group of this type, namely
AGL1(p

2) and, in this case, precisely one conjugacy class of subgroups of order p by Proposi-
tion 3.7(a). The aforementioned corollary and proposition also tell us that any other Frobenius
group of type (Cp×Cp)⋊Cm with precisely one conjugacy class of subgroups of order p is then
a subgroup of AGL1(p

2). For this reason, below, we only calculate Trivp(AGL1(p
2)).

Notation 4.1. Throughout this section, we assume that

G = G =

{(
a 0
b 1

)
∈ GL2(Fp2) | a ∈ F×

p2
, b ∈ Fp2

}
= F ⋊H

with

F :=

{(
1 0
b 1

)
∈ GL2(Fp2) | b ∈ Fp2

}
and H :=

{(
a 0
0 1

)
∈ GL2(Fp2) | a ∈ F×

p2

}
as in Corollary 3.6. We choose a generator

h :=

(
a′ 0
0 1

)
ofH where a′ is a generator of F×

p2
. We let x, y ∈ F be elements of order p such that F = ⟨x⟩×⟨y⟩

where x is chosen such that

⟨x⟩ = {
(
1 0
b′ 1

)
∈ GL2(Fp2) | (b′)p = b′}

We choose the following set of representatives of the conjugacy classes of G:

{1, h, h2, . . . , hp2−2, x}.
By Proposition 3.7, we can choose the following set of representatives for the G-conjugacy classes
of p-subgroups of G:

Q1 := {1},
Q2 := ⟨x⟩,
Q3 := F .

As in Proposition 3.4, we let Irr(G) = {χ1, . . . , χp2} where for each 1 ≤ i ≤ p2 − 1 we

set χi := InfGG/F (ξi) with ξi ∈ Irr(H) as defined in Notation 2.1, and χp2 := IndGF (ν) for some

ν ∈ Irr(F) \ {1F} .

Lemma 4.2. With notation of Notation 4.1, we have:
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(a) NG(Q1) = G and NG(Q1) ∼= G;

(b) NG(Q2) = F ⋊ ⟨hp+1⟩ and NG(Q2) ∼= ⟨y⟩⋊ ⟨hp+1⟩;
(c) NG(Q3) = G and NG(Q3) ∼= H.

Proof. Assertions (a) and (c) are straightforward from the definitions. Assertion (b) was proved
in part (a) of the proof of Proposition 3.7. □

Proposition 4.3. Let ζ be a fixed primitive (p2 − 1)-th root of unity in K and let ω := ζ(p+1).
Then the following assertions hold.

(a) The ordinary character table of G is as given in Table 2.

1G hj (1 ≤ j ≤ p2 − 2) x

χi (1 ≤ i ≤ p2 − 1) 1 ζ(i−1)j 1

χp2 p2 − 1 0 −1

Table 2. Ordinary character table of AGL1(p
2).

(b) The ordinary character table of NG(Q2) is as given in Table 3, where following Propo-
sition 3.4, we let Irr(NG(Q2)) = {θ1, . . . , θp} where for each 1 ≤ i ≤ p − 1 we set θi :=

Inf
NG(Q2)

NG(Q2)/⟨y⟩
(ξi) with ξi ∈ Irr(⟨hp+1⟩) as defined in Notation 2.1, and θp := Ind

NG(Q2)
⟨y⟩ (ν)

for some ν ∈ Irr(⟨y⟩) \ {1⟨y⟩} .

1G hj(p+1) (1 ≤ j ≤ p− 2) y

θi (1 ≤ i ≤ p− 1) 1 ω(i−1)j 1

θp p− 1 0 −1

Table 3. Ordinary character table of NG(Q2).

(c) Setting φi := χ◦
i for each 1 ≤ i ≤ p2 − 1, then IBrp(G) = {φ1, . . . , φp2−1} and Decp(G)

is as given in Table 4.

(d) Setting ψi := θ◦i for each 1 ≤ i ≤ p − 1, then IBrp(NG(Q2)) = {ψ1, . . . , ψp−1} and

Decp(NG(Q2)) is as given in Table 5.

Proof. (a) For each 1 ≤ i ≤ p2 − 1, we have χi = InfGG/F (ξi) with ξi ∈ Irr(H). It follows

from Notation 2.1 that χi(h
j) = ξi(h

j) = ζ(i−1)j for each 1 ≤ j ≤ p2 − 2. Moreover
χi(x) = 1, as x ∈ F . Then, χp2(1) = p2 − 1 as χp2 is induced from a linear character
of F to G. Using the definition of an induced character (see e.g. [Lin18b, Definition
3.1.19]) we obtain χp2(h

j) = 0 for each 1 ≤ j ≤ p2 − 2. Finally, χp2(x) = −1 follows

from the 1st orthogonality relations applied to χp2 and the trivial character.

(b) Analogous to (a).

(c) This is immediate from Proposition 3.4(c).
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φ1 φ2 φp2−2 φp2−1

χ1 1 0 0 0

χ2 0 1

χ3 0 0

0 0

1 0

χp2−1 0 0 0 1

χp2 1 1 1 1

Table 4. p-decomposition matrix of AGL1(p
2)

ψ1 ψ2 ψp−2 ψp−1

θ1 1 0 0 0

θ2 0 1

θ3 0 0

0 0

1 0

θp−1 0 0 0 1

θp 1 1 1 1

Table 5. p-decomposition matrix of NG(Q2)

(d) This is immediate from Proposition 3.4(c).
□

Theorem 4.4. Assume G = AGL1(p
2). Let ζ denote a primitive (p2−1)-th root of unity in K.

Then, the trivial source character table Trivp(G) of G is given as follows:

(a) T1,2 = T1,3 = T2,3 = 0 ;

(b) the matrices Ti,1 with 1 ≤ i ≤ 3 are as given in Table 6;

(c) the matrices T2,2 and T3,2 are as given in Table 7;

(d) the matrix T3,3 is as given in Table 8.
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1H hp+1 h2·(p+1) · · · h(p−2)·(p+1)

T2,2

χp2 +
∑p

a=0 χa(p−1)+1 p 1 1 · · · 1

χp2 +
∑p

a=0 χa(p−1)+2 p ζp+1 ζ2·(p+1) · · · ζ(p−2)·(p+1)

...
...

...
... · · ·

...

χp2 +
∑p

a=0 χa(p−1)+p−1 p ζ(p−2)·(p+1) ζ2·(p−2)·(p+1) · · · ζ(p−2)2·(p+1)

T3,2

χ1 1 1 1 · · · 1

χ2 1 ζ(p+1) ζ2·(p+1) · · · ζ(p−2)·(p+1)

χ3 1 ζ2·(p+1) ζ4·(p+1) · · · ζ2·(p−2)·(p+1)

...
...

...
... · · ·

...

χp2−1 1 ζ(p
2−2)·(p+1) ζ2·(p

2−2)·(p+1) · · · ζ(p
2−2)·(p−2)·(p+1)

Table 7. Ti,2 for 2 ≤ i ≤ 3.

hj (0 ≤ j ≤ p2 − 2)

T3,3 χi (1 ≤ i ≤ p2 − 1) ζ(i−1)j (1 ≤ i ≤ p2 − 1)

Table 8. T3,3.

Proof. (a) The claim is immediate from Lemma 2.4(a).

(b) The matrix T1,1. By Lemma 2.4(b), we have

T1,1 = Φp(G) = Decp(G)
t ·X(G, p′).

Hence, the values of T1,1 in Table 6 are obtained from Table 2 and Table 4. The labels
of the rows of T1,1 are the ordinary characters of the PIMs of kG and can be read off
from the decomposition matrix in Table 4.

The matrix T2,1. By Lemma 2.4(c), we have

T2,1 =
(
χ
M̂
(s)

)
M∈TS(G;Q2),s∈[G]p′

.

Moreover, we sort the modules in TS(G;Q2) according to the labelling of the rows of
Φp(NG(Q2)).

Now, let M ∈ TS(G;Q2). Then, by the bijections in Subsection 2.3, there exists a
unique PIM Pψi

of kNG(Q2), with 1 ≤ i ≤ p− 1, such that

χ
M̂

= IndGF⋊⟨hp+1⟩ Inf
F⋊⟨hp+1⟩
(F⋊⟨hp+1⟩)/⟨x⟩(Φψi

)

and by Proposition 4.3(d) the ordinary character of Pψi
of kNG(Q2) is given by

Φψi
= θi + θp .
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By Proposition 2.5, the induced module

IndGF⋊⟨hp+1⟩ Inf
F⋊⟨hp+1⟩
(F⋊⟨hp+1⟩)/⟨x⟩(Pψi

)

is indecomposable. Hence, the Green correspondent of Inf
NG(Q2)

NG(Q2)
(Pψi

) is

f(Inf
NG(Q2)

NG(Q2)
(Pψi

)) = IndGF⋊⟨hp+1⟩ Inf
F⋊⟨hp+1⟩
(F⋊⟨hp+1⟩)/⟨x⟩(Pψi

).

Next, we compute the ordinary characters of these modules. First, note that inflation
does not change the degree of a character. Then, by Frobenius reciprocity, we have

⟨IndGF⋊⟨hp+1⟩ Inf
F⋊⟨hp+1⟩
(F⋊⟨hp+1⟩)/⟨x⟩(θp), χj⟩ = ⟨InfF⋊⟨hp+1⟩

(F⋊⟨hp+1⟩)/⟨x⟩(θp),Res
G
F⋊⟨hp+1⟩(χj)⟩ = 0

for all 1 ≤ j ≤ p2 − 1 as {χ1, . . . , χp2−1} = Lin(G). Hence, it follows that

IndGF⋊⟨hp+1⟩ Inf
F⋊⟨hp+1⟩
(F⋊⟨hp+1⟩)/⟨x⟩(θp) = χp2 .

Again, by Frobenius reciprocity, we obtain for each integer 0 ≤ a ≤ p that

⟨IndGF⋊⟨hp+1⟩ Inf
F⋊⟨hp+1⟩
(F⋊⟨hp+1⟩)/⟨x⟩(θi), χa(p−1)+i⟩ = ⟨InfF⋊⟨hp+1⟩

(F⋊⟨hp+1⟩)/⟨x⟩(θi),Res
G
F⋊⟨hp+1⟩(χa(p−1)+i)⟩.

By inspecting Table 2 and Table 3, we deduce that the last expression is equal to 1 for
each integer 0 ≤ a ≤ p. Indeed, on the one hand, for each 1 ≤ u ≤ p − 1 and every
1 ≤ v ≤ p− 2 we have

θu(h
v(p+1)) = ω(u−1)v = ζ(u−1)(p+1)v

and on the other hand, for each 1 ≤ u ≤ p− 1 and every 1 ≤ v ≤ p− 2 we have

χa(p−1)+u(h
v(p+1)) = ζ(a(p−1)+u−1)·v(p+1) = ζ(p

2−1)avζ(u−1)(p+1)v = 1 · ζ(u−1)(p+1)v,

by definition of ζ and ω (see Proposition 4.3). Since the character degree of

IndGF⋊⟨hp+1⟩ Inf
F⋊⟨hp+1⟩
(F⋊⟨hp+1⟩)/⟨x⟩(Φψi

)

is equal to

[G : F ⋊ ⟨hp+1⟩] · p = (p+ 1) · p = p2 + p = (p2 − 1) + (p+ 1),

we have already found all irreducible constituents of the induced characters

IndGF⋊⟨hp+1⟩ Inf
F⋊⟨hp+1⟩
(F⋊⟨hp+1⟩)/⟨x⟩(Φψi

)

and it is obvious from the respective character tables that Inf
F⋊⟨hp+1⟩
(F⋊⟨hp+1⟩)/⟨x⟩(Φψi

) coincides

with χp2 +
∑p

a=0 χa(p−1)+i at all other elements of F ⋊ ⟨hp+1⟩. In total, it follows that

IndGF⋊⟨hp+1⟩ Inf
F⋊⟨hp+1⟩
(F⋊⟨hp+1⟩)/⟨x⟩(Φψi

) = χp2 +

p∑
a=0

χa(p−1)+i ,

as claimed. Finally, we obtain the entries of T2,1 in Table 6 by evaluating the obtained
characters at the p′-conjugacy classes of G using Proposition 4.3(b).

The matrix T3,1. By Lemma 2.4(c) we have

T3,1 =
(
χ
M̂
(s)

)
M∈TS(G;Q3),s∈[G]p′

.
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Now, Lemma 4.2 yields NG(Q3) = G and NG(Q3) = G/Q3
∼= H. Hence, by the

bijections in Subsection 2.3, we have

TS(G;Q3) = {InfGH(P ) | P PIM of kH} .
Because H is a p′-group, the ordinary characters of the PIMs of kH are given by Irr(H).
It follows that the ordinary characters χ

M̂
of the trivial source modules M ∈ TS(G;Q3)

are precisely given by {InfGG/Q3
(ξ) | ξ ∈ Irr(H)}. A set of representatives of the p′-

conjugacy classes of NG(Q3) = G is given by the elements of H. Therefore, T3,1 = X(H)
and the values in T3,1 in Table 6 are as claimed by Notation 2.1.

(c) The matrix T2,2. As in part (b), we follow the order of the previously computed decom-

position matrix such that the order of the rows of T2,2 and the order of the rows of T2,1
coincide. By Lemma 2.4(b), we have

T2,2 = Φp(NG(Q2)) = Decp(NG(Q2))
t ·X(NG(Q2), p

′).

Hence, the values of T2,2 in Table 7 are obtained from Table 3 and Table 5. Moreover,
recall that in T2,1 above, we sorted the modules in TS(G;Q2) according to the labelling

of the rows of Φp(NG(Q2)). It follows that the labellings of the rows of T2,2 and T2,1
coincide.

The matrix T3,2. By definition, we have T3,2 =
[
τGQ2,s

([M ])
]
M∈TS(G;Q3),s∈[NG(Q2)]p′

. So,

let M ∈ TS(G;Q3) and let t ∈ [NG(Q2)]p′ . By Lemma 2.3 we have

τGQ2,t([M ]) = χ
M̂
(gp · t)

for any gp ∈ Q2 \ {1}. Because Q2 ≤ Q3 = F �G, the ordinary characters of the trivial
source modules with vertex Q3 have Q2 in their kernels. Hence, we obtain

χ
M̂
(gp · t) = χ

M̂
(1G · t).

By Lemma 4.2, [NG(Q2)]p′ = ⟨hp+1⟩, therefore the values of T3,2 in Table 7 are as
claimed by Notation 2.1.

(d) The matrix T3,3. Since NG(Q3) ∼= H which is a p′-group, by Lemma 2.4(b), we have

T3,3 = Φp(H) = Decp(H)t ·X(H, p′) = X(H),

as claimed. Moreover, the labelling of the rows of T3,3 coincides with the labelling of the
rows of T3,1 by our fixed labelling of Irr(H) given in Notation 2.1 and the bijections in
Subsection 2.3.

□

Example 4.5. Let G be the Frobenius group (C3 × C3)⋊ C8 of order 72 with maximal fusion
pattern, i.e. G has precisely one conjugacy class of subgroups of order 3. It follows that we have
3 conjugacy classes of 3-subgroups of G, namely:

Q1 = {1}, Q2
∼= C3, Q3

∼= C3 × C3.

Notice that G is isomorphic to the group labelled by [ 72, 39 ] in GAP’s SmallGroups library,
see [GAP]. The ordinary character table of G is as given in Table 9, where ζ8 denotes a primitive
8-th root of unity.
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1a 8a 4a 8b 2a 8c 4b 8d 3a
χ1 1 1 1 1 1 1 1 1 1
χ2 1 ζ8 ζ28 ζ38 −1 −ζ8 −ζ28 −ζ38 1
χ3 1 ζ28 −1 −ζ28 1 ζ28 −1 −ζ28 1
χ4 1 ζ38 −ζ28 ζ8 −1 −ζ38 ζ28 −ζ8 1
χ5 1 −1 1 −1 1 −1 1 −1 1
χ6 1 −ζ8 ζ28 −ζ38 −1 ζ8 −ζ28 ζ38 1
χ7 1 −ζ28 −1 ζ28 1 −ζ28 −1 ζ28 1
χ8 1 −ζ38 −ζ28 −ζ8 −1 ζ38 ζ28 ζ8 1
χ9 8 0 0 0 0 0 0 0 −1

Table 9. Ordinary character table of (C3 × C3)⋊ C8

The trivial source character table Triv3(G) is as given in Table 10. Note that we label the
columns of Triv3(G) with 3′-elements in Ni instead of N i (1 ≤ i ≤ 3).
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5. The minimal fusion case

We now turn to the computation of the trivial source character tables of metabelian Frobenius
groups with Frobenius kernel F ∼= Cp × Cp and cyclic Frobenius complement H ∼= Cm such
that no two conjugacy classes of p-subgroups of G of order p are G-conjugate. Recall from
Proposition 3.7(b) that |H| divides p − 1 and that H acts on F by raising each element to a
power of itself in this case.

Notation 5.1. Throughout this section, we adopt the following notation. We choose a gener-
ator h of Cp−1 and let H := ⟨ha(m)⟩, where a(m) := p−1

m . We let {x, y} be a set of generators
for F . We choose the following set of representatives of the conjugacy classes of G:

{xiyj | 1 ≤ i, j ≤ p} ∪ {ha(m), h2a(m), . . . , h(m−1)a(m)}.
Moreover, by Proposition 3.7, we can choose the following set of representatives for the G-
conjugacy classes of p-subgroups of G:

Q1 := {1},
Qi := ⟨x · yi−2⟩ (2 ≤ i ≤ p+ 1),

Qp+2 := ⟨y⟩,
Qp+3 := F.

Then, up to G-conjugation, the lattice of subgroups of G of order p is as given below.

Qp+3

Q2 Q3 Q4 · · · Qp Qp+1 Qp+2

Q1

As in Proposition 3.4, we let Irr(G) = {χ1, . . . , χm+(p+1)·a(m)} where for each 1 ≤ i ≤ m we

set χi := InfGG/F (ξi) with ξi ∈ Irr(H) as defined in Notation 2.1, and

{χm+1, . . . , χm+(p+1)·a(m)} = {IndGF (ν) | ν ∈ T}
where T is a set of representatives for the conjugation action of G on Irr(F ) \ {1F } .

Lemma 5.2. With the notation of Notation 5.1, for each 1 ≤ j ≤ p+3 the following assertions
hold:

(a) NG(Qj) = G and NG(Qj) = G/Qj;

(b) NG(Qj) is a Frobenius group with Frobenius complement H ∼= HQj/Qj and Frobenius
kernel F/Qj.

Proof. (a) As no two distinct p-subgroups of G of order p are G-conjugate, it follows that
NG(Qj) = G for each 1 ≤ j ≤ p+ 3. The second claim is then immediate.

(b) As G is a Frobenius group with respect to H, Qj ⪇� F and Qj ⪇� G, the assertion follows
from the definition. □
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Notation 5.3. For an arbitrary but fixed a ∈ {2, . . . , p+2}, we introduce the following notation.
As in Proposition 3.4, we let Irr(NG(Qa)) = {θ1, . . . , θm+ p−1

m
} where for each 1 ≤ i ≤ m we

set θi := Inf
G/Qa

(G/Qa)/(F/Qa)
(ξi) with ξi ∈ Irr(H) as defined in Notation 2.1, and

{θm+1, . . . , θm+ p−1
m

} = {IndG/Qa

F/Qa
(ν) | ν ∈ V }

where V is a set of representatives for the conjugation action of G/Qa on Irr(F/Qa) \ {1F/Qa
} .

Proposition 5.4. (a) Setting φi := χ◦
i for each 1 ≤ i ≤ m, then IBrp(G) = {φ1, . . . , φm}

and Decp(G) is as given in Table 11.

φ1 φ2 φm−1 φm
χ1 1 0 0 0
χ2 0 1
χ3 0 0

0 0
1 0

χm 0 0 0 1
χm+1 1 1 1 1

χm+(p+1)·a(m) 1 1 1 1

Table 11. p-decomposition matrix of G

(b) Let a ∈ {2, . . . , p + 2}. Setting ψi := θ◦i for each 1 ≤ i ≤ m, then IBrp(NG(Qa)) =

{ψ1, . . . , ψm} and Decp(NG(Qa)) is as given in Table 12.

ψ1 ψ2 ψm−1 ψm
θ1 1 0 0 0
θ2 0 1
θ3 0 0

0 0
1 0

θm 0 0 0 1
θm+1 1 1 1 1

θm+ p−1
m

1 1 1 1

Table 12. p-decomposition matrix of NG(Qa)

Proof. Both (a) and (b) are immediate from Proposition 3.4(c). □

Proposition 5.5. Let G be a metableian Frobenius group with cyclic Frobenius complement
H of order m and elementary abelian Frobenius kernel F of order p2 such that the number
of G-conjugacy classes of subgroups of G of order p equals p + 1. Then, with the notation of
Notation 5.1, the following assertions hold.
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(a) Let M and N be trivial source kG-modules with non-trivial cyclic vertices. Then M ∼= N
if and only if χ

M̂
= χ

N̂
.

(b) As sets Irr(G) \ Lin(G) =
∐

2≤i≤p+2
InfGG/Qi

(
Irr(G/Qi) \ Lin(G/Qi)

)
.

(c) Let 2 ≤ i ≤ p+ 2. Let M ∈ TS(G;Qi). Then

χ
M̂

= λ+
∑

χ∈Irr(G)\Lin(G),Qi≤Ker(χ)

χ

for some λ ∈ Lin(G).

Proof. (a) It is clear that isomorphic modules afford the same ordinary characters. We prove
the sufficient condition by contraposition. So assume that M ̸∼= N . First, we suppose
that M and N have a common vertex Qi for some 2 ≤ i ≤ p+ 2.

We know from Lemma 5.2 that NG(Qi) = G/Qi is a Frobenius group with Frobenius
complement H = QiH/Qi and Frobenius kernel F/Qi. It follows from Proposition 5.4(b)
that for 1 ≤ u ≤ m the ordinary characters of the PIMs Pψu of kNG(Qi) are given by

Φψu = θu +
∑ p−1

m
v=1 θm+v. Let InfGG/Qi

(Pψu1
) and InfGG/Qi

(Pψu2
) be the Green correspon-

dents of M and N , respectively, where 1 ≤ u1 ̸= u2 ≤ m. Hence,

χ
M̂

= InfGG/Qi
(Φψu1

) ̸= InfGG/Qi
(Φψu2

) = χ
N̂
.

We can now assume that M has vertex Qi and N has vertex Qj with 2 ≤ i ̸= j ≤ p+2.
Hence, we can assume that

χ
M̂

= InfGG/Qi
(Φψu) = InfGG/Qi

(θu +

p−1
m∑
v=1

θm+v)

for some 1 ≤ u ≤ m. It follows from Proposition 2.5 thatM and N correspond to simple
kH-modules S and T , namely:

M ∼= IndGNG(Qi)
Inf

NG(Qi)

NG(Qi)
Ind

NG(Qi)
QiH/Qi

(S)

= IndGG InfGG/Qi
Ind

G/Qi

QiH/Qi
(S)

= InfGG/Qi
Ind

G/Qi

QiH/Qi
(S) = IndGQiH InfQiH

QiH/Qi
(S)

and analogously N ∼= IndGQjH
Inf

QjH

QjH/Qj
(T ). We set I := Qi ⋊H, J := Qj ⋊H, S0 :=

InfQiH
QiH/Qi

(S), and T0 := Inf
QjH

QjH/Qj
(T ). Hence, we obtain

⟨χ
M̂
, χ

N̂
⟩ = ⟨IndGQi⋊H(χŜ0

), IndGQj⋊H(χT̂0)⟩

= ⟨χ
Ŝ0
,ResGQi⋊H(Ind

G
Qj⋊H(χT̂0))⟩

= ⟨χ
Ŝ0
,

∑
s∈I\G/J

IndIs−1Js∩I(Res
s−1Js
s−1Js∩I(

sχ
T̂0
))⟩,

where the first equation holds by Proposition 2.5, the second equation holds by Frobenius
reciprocity, and the last equation is true due to the Mackey formula. The set of double
cosets I \ G/J contains only one element because H acts on the abelian group F by



Trivial source character tables of Frobenius groups of type (Cp × Cp) ⋊H 23

raising each element to a power of itself. Therefore,

⟨χ
M̂
, χ

N̂
⟩ = ⟨χ

Ŝ0
, IndIJ∩I(Res

J
J∩I(χT̂0))⟩

= ⟨χ
Ŝ0
, IndIH(Res

J
H(χT̂0))

= ⟨χ
Ŝ0
, IndIH(χT̂ )⟩ ≤ 1,

where the inequality holds due to the following argument. As H is a p′-group, the simple
kH-module T is projective. Hence, also the kI-module W := IndIH(T ) is projective.

Since the k-dimension of W equals [I : H] · 1 = |Qi|·|H|
|H| · 1 = p, the kI-module W is

indecomposable, hence a PIM of kI. It follows from the decomposition matrix Decp(I)
of I which we know from Proposition 3.4 that χ

Ŵ
has only one linear character as a

constituent. This is a contradiction, as the character χ
M̂

has at least two irreducible
constituents such that we would have to have ⟨χ

M̂
, χ

N̂
⟩ ≥ 2 if we really had χ

M̂
= χ

N̂
.

(b) Let 2 ≤ i, j ≤ p+ 2 with i ̸= j. We claim that the intersection

{InfGG/Qi
(µ) | µ ∈ Irr(G/Qi) \ Lin(G/Qi)} ∩ {InfGG/Qj

(ν) | ν ∈ Irr(G/Qj) \ Lin(G/Qj)}

is empty. Assume the contrary and let γ be an element of this intersection. Note that γ
is non-linear. We know from the proof of part (a) that

{χ
M̂

| M ∈ TS(G;Qi)} = {InfGG/Qi
(Inf

G/Qi

H (λ) + σ1) | λ ∈ Irr(H)},

where σ1 :=
∑

α∈Irr(G/Qi)\Lin(G/Qi)

α and H is identified with (G/Qi)/(F/Qi). Moreover,

the set

{χ
N̂

| N ∈ TS(G;Qj)} = {InfGG/Qj
(Inf

G/Qj

H (λ̃) + σ2) | λ̃ ∈ Irr(H)},

where σ2 :=
∑

β∈Irr(G/Qj)\Lin(G/Qj)

β. Specialising to λ = λ̃ = 1H , we deduce that the

scalar product

⟨InfGG/Qi
(1G/Qi

+ σ1), Inf
G
G/Qj

(1G/Qi
+ σ2)⟩ ≥ 2,

as γ is a non-linear constituent of both inflated characters. This is a contradiction to
the proof of part (a).

Next, we see that Notation 5.3 yields

|{InfGG/Qi
(µ) | µ ∈ Irr(G/Qi) \ Lin(G/Qi)}| =

p− 1

m
for each 2 ≤ i ≤ p+ 2. Hence, it follows that∐

2≤i≤p+2

{InfGG/Qi
(µ) | µ ∈ Irr(G/Qi) \ Lin(G/Qi)} = Irr(G) \ Lin(G),

as | Irr(G) \ Lin(G)| = p2−1
m = p−1

m · (p+ 1).

(c) As in the proof of part (b), we know from part (a) that

{χ
M̂

| M ∈ TS(G;Qi)} = {InfGG/Qi
(Inf

G/Qi

H (λ) + σ1) | λ ∈ Irr(H)},

where σ1 :=
∑

α∈Irr(G/Qi)\Lin(G/Qi)

α. As G is a Frobenius group, we have

Lin(G) = {InfGG/Qi
(Inf

G/Qi

H (ξ)) | ξ ∈ Irr(H)}.
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Moreover, we know from part (b) that∑
χ∈Irr(G)\Lin(G),Qi≤Ker(χ)

χ =
∑

α∈Irr(G/Qi)\Lin(G/Qi)

InfGG/Qi
(α).

The assertion follows.
□

Theorem 5.6. Let G be a metableian Frobenius group with cyclic complement H of order m
dividing p − 1 and Frobenius kernel F ∼= Cp × Cp such that the number of G-conjugacy classes
of subgroups of G of order p is precisely p+1. Then, the trivial source character table Trivp(G)
seen as a block matrix is as given in Table 13. For all 1 ≤ i ≤ p + 3, we choose the labelling
of the columns of the i-th block column of Trivp(G) precisely as the labelling of the columns of
X(H). For each 1 ≤ i ≤ p + 3, we choose the labelling of the rows of the i-th block row of

Trivp(G) as IndGQi⋊H(Inf
Qi⋊H
H (λj)), where 1 ≤ j ≤ m and λj denotes the character labelling the

j-th row of X(H). Then, the following assertions hold:

(a) Ti,j = 0 for every 2 ≤ j < i ≤ p+ 2 and for every 1 ≤ i < j ≤ p+ 3;

(b) T1,1 = X(H) +

p
2 − 1 0 · · · 0
...

...
. . .

...
p2 − 1 0 · · · 0

;

(c) T2,1 = X(H) +

p− 1 0 · · · 0
...

...
. . .

...
p− 1 0 · · · 0

;

(d) Tp+3,1 = X(H).

T1,1 0 0 0 · · · 0

T2,1 T2,2 = T2,1 0 0 · · · 0

T3,1 = T2,1 0 T3,3 = T2,1 0 · · · 0

.

.

.
.
.
.

. . . . . . . . .
.
.
.

Tp+2,1 = T2,1 0 · · · 0 Tp+2,p+2 = T2,1 0

Tp+3,1 Tp+3,2 = Tp+3,1 · · · · · · Tp+3,p+2 = Tp+3,1 Tp+3,p+3 = Tp+3,1

Table 13. Trivial source character table Trivp(G), seen as a block matrix

Proof. By Lemma 5.2, we have NG(Qj) = G for each 1 ≤ j ≤ p+3. As G is a semi-direct product
of the normal p-subgroup F by the abelian p′-subgroup H, clearly H is a set of representatives
of the p′-conjugacy classes of G. Hence, we can choose our labels of the columns of the block
columns of Trivp(G) as asserted.

(a) The assertion is immediate from Lemma 2.4(a).

(b) By Lemma 2.4(b), we have T1,1 = Φp(G). The labels of the rows of T1,1 are the ordinary
characters of the PIMs of kG and can be read off from the decomposition matrix in
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Table 11, that is, for each 1 ≤ i ≤ m we have

Φφi = χi +

m+(p+1)·a(m)∑
j=m+1

χj .

In order to prove that

T1,1 = X(H) +


p2 − 1 0 · · · 0

...
...

. . .
...

p2 − 1 0 · · · 0

 ,

it is only left to prove that χj(u) = 0 for all m + 1 ≤ j ≤ m + (p + 1) · a(m) and for
all u ∈ Gp′ \ {1}. But this follows easily from the formula for induced characters and
from the fact that conjugation does not change the order of a group element. Indeed,
for any y ∈ H \ {1} and for any ν ∈ Irr(F ), we have

(IndGF (ν))(y) =
1

|F |
∑
x∈G

·
ν(xyx−1) = 0.

(c) The matrices Ta,a (2 ≤ a ≤ p+ 2). By Lemma 5.2 the group NG(Qa) = G/Qa is a

Frobenius group with Frobenius complement H and Frobenius kernel F/Qa. It follows
from Proposition 5.4(b) that the ordinary characters of the PIMs Pψi

of kNG(Qa) are
given by

Φψi
= θi +

p−1
m∑
j=1

θm+j

for all 1 ≤ i ≤ m. As every non-linear ordinary irreducible character of G/Qa is induced
from a linear character of F/Qa, their degrees are [G/Qa : F/Qa]·1 = [G : F ] = |H| = m.

Therefore, deg(Φψi
) = 1 + p−1

m ·m = 1 + p− 1 = p for all 1 ≤ i ≤ m. Using the formula
for induced characters, we see that all non-linear constituents of Φψi

evaluate to 0 at g if

g ∈ H \ {1}. Moreover, all linear characters of NG(Qa) = G/Qa are given by inflations
of linear characters of H. As [G/Qa]p′ = H, it follows that

Ta,a = X(H) +


p− 1 0 · · · 0
...

...
. . .

...

p− 1 0 · · · 0

 ,

as claimed.

The matrices Ta,1 (2 ≤ a ≤ p+ 2). By Lemma 2.4(c), we have

Ta,1 =
(
χ
M̂
(s)

)
M∈TS(G;Qa),s∈[G]p′

.

Let M ∈ TS(G;Qa). By the bijections in Subsection 2.3, we have

χ
M̂

= IndGNG(Qa)
Inf

NG(Qa)
NG(Qa)/Qa

(Φψi
) = IndGG InfGG/Qa

(Φψi
) = InfGG/Qa

(Φψi
)

for a unique i ∈ {1, . . . ,m}. As [G]p′ = H, we have Ta,1 = Ta,a = T2,1 for all 2 ≤
a ≤ p+ 2, as asserted. The ordinary characters InfGG/Qa

(Φψi
) are described in details in

Proposition 5.5 and they coincide with the given labelling of the rows of Ta,1.
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(d) The matrices Tp+3,b (1 ≤ b ≤ p+ 3). By Lemma 2.4(b), we have

Tp+3,p+3 = Φp(NG(Qp+3)) = Decp(NG(Qp+3))
t ·X(NG(Qp+3), p

′).

As NG(Qp+3) = G/F ∼= H is a cyclic p′-group, the PIMs Pi (1 ≤ i ≤ m) of k[G/F ] ∼= kH

are, up to isomorphism, precisely the simple kH-modules. Hence, Decp(NG(Qp+3)) is

equal to the identity matrix of size m ×m and X(NG(Qp+3), p
′) = X(H). As H is a

cyclic p′-group, its ordinary characters follow from Notation 2.1 and χ
P̂i

corresponds to

the i-th row of X(H) for all 1 ≤ i ≤ m. This determines Tp+3,p+3.
Now we compute Tp+3,1. By the bijections in Subsection 2.3 and by Proposition 2.5,

the ordinary character of the Green correspondent of the k[NG(Qp+3)]-module Pi is
given by

IndGNG(Qp+3)
Inf

NG(Qp+3)

NG(Qp+3)/Qp+3
(χ

P̂i
) = IndGG InfGG/Qp+3

(χ
P̂i
) = InfGG/F (χP̂i

) = χi.

As [G]p′ = H, the matrix Tp+3,1 is as asserted.
Finally, for 2 ≤ b ≤ p+2, the entries of the matrix Tp+3,b follow from Lemma 2.3. Let

Qb = ⟨tb⟩ and let s ∈ [G]p′ . Then, for any M ∈ TS(G;F ) we have

τG⟨tb⟩(s) = χ
M̂
(tb · s) = χ

M̂
(s),

since F �G and F ≤ Ker(λ) for all λ ∈ Lin(G).

□

Example 5.7. Let G be the Frobenius group (C5 ×C5)⋊C4 of order 100 with minimal fusion
pattern, i.e. G has precisely 6 distinct conjugacy classes of subgroups of order 5. It follows that
we have 8 conjugacy classes of 5-subgroups of G, namely:

Q1 = {1}, Q2
∼= Q3

∼= Q4
∼= Q5

∼= Q6
∼= Q7

∼= C5, Q8
∼= C5 × C5.

Notice that G is isomorphic to the group labelled by [ 100, 11 ] in GAP’s SmallGroups library,
see [GAP]. The ordinary character table of G is as given in Table 14, where ζ4 denotes a
primitive 4-th root of unity.

1a 4a 2a 4b 5a 5b 5c 5d 5e 5f

χ1 1 1 1 1 1 1 1 1 1 1

χ2 1 ζ4 −1 −ζ4 1 1 1 1 1 1

χ3 1 −1 1 −1 1 1 1 1 1 1

χ4 1 −ζ4 −1 ζ4 1 1 1 1 1 1

χ5 4 0 0 0 4 −1 −1 −1 −1 −1

χ6 4 0 0 0 −1 4 −1 −1 −1 −1

χ7 4 0 0 0 −1 −1 4 −1 −1 −1

χ8 4 0 0 0 −1 −1 −1 4 −1 −1

χ9 4 0 0 0 −1 −1 −1 −1 4 −1

χ10 4 0 0 0 −1 −1 −1 −1 −1 4

Table 14. Ordinary character table of (C5 × C5)⋊ C4

The trivial source character table Triv5(G) is as given in Table 15. Note that we label the
columns of Triv5(G) with 5′-elements in Ni instead of N i (1 ≤ i ≤ 8).
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