FRIEZE PATTERNS OVER FINITE COMMUTATIVE LOCAL RINGS

BERNHARD BOHMLER AND MICHAEL CUNTZ

ABSTRACT. We count numbers of tame frieze patterns with entries in a finite commutative local ring.
For the ring Z/p"Z, p a prime and r € N we obtain closed formulae for all heights. These may be
interpreted as formulae for the numbers of certain relations in quotients of the modular group.

1. INTRODUCTION

The special linear group SLo(Z) is, for example, generated by the following two matrices:

s=(1 9) m=(0 1)

Since S? = —id, any element in SLy(Z) can be written (up to a sign) as a product of matrices of the
form n(a) :=T*S for a € Z. The relations among these matrices n(a), a € Z, are particularly interesting.
For example, a sequence of positive integers ci,...,c, such that n(cy)---n(e,) = —id is called a

quiddity cycle because it is the quiddity of a Conway-Coxeter frieze pattern. It turns out that these
quiddity cycles are in bijection with triangulations of a convex n-gon by non-intersecting diagonals and
are thus counted by Catalan numbers [CC73]. More generally, one can count or parametrize the set of
solutions to n(c1) -+ n(c,) = —id with ¢1,...,¢, € Z (cf. [CHII)), or for example n(cy) - n(c,) = +id
with ¢1,...,¢, € Nyg (cf. [OvslS]). As in [Cunl9], we call a solution to

n(er) - mlcn) = eid

an e-quiddity cycle (where c1,..., ¢, are elements of a ring and 7(-) is as in Definition which is
compatible with the above n).

A solution ¢y,...,¢, € Z/NZ to n(c1)---n(c,) = +id may be viewed as a solution over Z to
n(c1)---n(c,) € T where T is a congruence subgroup of SLo(Z). Thus it is interesting to count the
number of such solutions. With the chinese remainder theorem, this can be reduced to the case in which
N is a power of a prime. Such a closed formula appeared first in [MG21] for finite fields when the product
is equal to —id, a generalization with arbitrary matrix on the right is contained in [CM24], and the case
of Z/2"7Z of odd length is considered in [Mab24]. In this article we give closed formulae for these numbers
of solutions over all rings Z/NZ, N € N, and a recursion for the case of an arbitrary matrix on the right
side, i.e. for the solutions of n(c1) - - - n(c,) = A for arbitrary A € SLy(Z/NZ).

In Section [3], we first count the quiddity cycles of odd lengths in the more general case of commutative
finite local rings:

Theorem 1.1 (Thm. . Let R be a finite commutative local ring with mazimal ideal I I R, € €
{#1} C R, and n € Nsy with n odd or (—1)"/? # ¢. If w, is the number of e-quiddity cycles over R/I
of length n, then the number of e-quiddity cycles over R is

Wy - |73,

As a corollary, this implies most of the previously known results for quiddity cycles over residue class
rings.

In a second much more technical part (Section [4]) we give closed formulae for the number of solutions
of arbitrary lengths over Z/p"Z, p an arbitrary prime. For m € N, ¢ € Z\ {£1}, we write (’;)q =

m_q 1n71_1 m__1
L) LC i) (q,l))(qul) ) and [m]g := qq71 .

Theorem 1.2 (Thm. 4.12). Let R = Z/p"Z for a prime p and r € N, I = pR the mazimal ideal,
n € Nuy with n even, and ¢ € {£1}. If w, is the number of e-quiddity cycles over R/I of length n, then
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the number of e-quiddity cycles over R is

(= 1) PO o i o= (1)

w, - pr=D(n=3) if e=—(-1)"?andp>2,
(1 = 1) - prD = f o= —(-1)"2 andp=2
where
oy = 1, os=(r—1p" —(r—2)p" 1,
on = p(n/Q—l)T[r — 1]p“/2*2 — p(n/Z_l)r_l[T — 2]pn/272.

Note that the numbers w,, are known:

Theorem 1.3 ([MG21, Thm. 1], [CM24, Thm. 1.1]). Let g be a prime power and n € N, n > 4. Then
the number w,, of e-quiddity cycles over Iy of length n is

[%]qz if m=1 (mod 2),
Wy = (q—l)(”éQ)q+q"/2—1 if n=0 (mod 2), &= (-1)"/2,
(q— 1)(”42)q if n=0 (mod 2), e=—(=1)"2 ¢ odd.

Finally in Section [5, we determine recursions for the number of solutions to
n(cr) - nlen) = A
for ¢1,...,¢, € Z/NZ, N € N and A an arbitrary matrix. A closed formula could theoretically be
computed for each fixed matrix A.
2. QUIDDITY CYCLES AND RELATIONS

Definition 2.1. Let R be a ring and a € R. Then we set
a —1
n(a) = (1 0 > .

n

[c1,...,¢n] = HW(Ci)-

i=1

For cy,...,c, € R we write

Lemma 2.2. Let R be a commutative ring, a,b,u,v,z,y € R such that a,(uv — 1) € R*. Then

1—v 1—u
1 = - -1
(1) [, u, v, y] {Hm}_l,uv ,y+uv_1],
(2) [$71,y] = [LL'— 171/— 1]

Proof. The first equation already appeared in [CHI9, Lemma 4.2]; the second one is the special case
when u = 1. (]

The following lemma was discovered by the second author 2022 when working with quiddity cycles
over rings. We shall not need it for our main theorems, but it is the key for the recursion in the last
section of this article. It is also the main ingredient for the main results of [Mab24]; although the lemma
was published there first, F. Mabilat acknowledged the origin of this lemma in his article. Note that the
result in [Mab24] is a very special case of our result on local rings in Section [3| which is proven with a
completely different idea.

Lemma 2.3. Let R be a commutative ring, c,u,v,b,d € R. Then

(3) [c,u,v,b,d] = c—vbi,:c,d—m}72
x x
for
b—1 —-1)—-1
@D
v
ifv,x € R*.

Proof. Direct computation. O



Definition 2.4. For a € R* we write

a 0
Aa = (O a‘l) '

Lemma 2.5. Let R be a commutative ring, (¢1,...,¢,) € R™ and t € R*. If n is odd, then

(é (1)) [Cl, .. ,Cn] (é t01> = [tcl,t_lcg,t03,t_1c4, e ,f,cn] .

In particular, if [c1,...,¢cn] = Ay for a € R*, then
[tcl, t_lcg, tes, t_lc4, o ,tcn] = A\ia-

Proof. Observe first that for a,b € R,

6 D DED-6 D)

and

t 0\ (fa —1\(1 0\ (ta -1

0 1 1 0 o t ')~ \1 o)
Thus

1 0 t=1 0 _ _ t 0 1 0
[e1,. -, cn] (O tl) = ( 0 1) [tcl,t Leg, . it lcn,l] (O 1) n(cn) (0 t1>
t= 0 _ _

= < 0 1) [tcl,t Yoo, oot lcn_l] n(tcn)

which is the claim. O

3. QUIDDITY CYCLES OVER FINITE LOCAL RINGS

Definition 3.1 ([Cunl9, Def. 2.2]). Let R be a commutative ring, ¢ = (¢1,...,¢,) € R™, and € € R.
Then c is called an e-quiddity cycle if
[e1,...,cn] =cid = A

Note that since this product is in SLo(R), we always have ¢ = 71,

then € € {£1}.
3.1. Odd length.

For instance, if R is a domain,

Theorem 3.2. Let R be a finite commutative local ring with mazimal ideal I < R, ¢ € {£1} C R,
and n € Nuy with n odd or (—1)"/? # . If w, is the number of e-quiddity cycles over R/I of length n,
then the number of e-quiddity cycles over R is

Wy, - \I\"‘g.

Proof. The condition of being a quiddity cycle is a polynomial identity. Thus if x : R — R/I is the
canonical projection and (cy,...,c,) is an e-quiddity cycle, then (k(c1),...,k(cn)) is an k(e)-quiddity
cycle over R/I. For each fixed e-quiddity cycle ¢ = (¢1,...,¢,) € (R/I)™, we count the number of
e-quiddity cycles which project to this cycle under k.

Since I is maximal, R/I is a field. Assume first that ¢ contains no unit, i.e. ¢ = (0,...,0). Then
0 —1)n
(=1) ifn=1 (mod 2),
-(=)* 0

(4) [0,...,0] = (—1)n> 0

0 (_1)n/2) ifn=0 (mod 2),

so n is even and € = (—1)”/ 2. These are exactly the cases that are excluded by assumption. Thus we

may assume that there is an entry in ¢ which is a unit, after rotating the cycle, without loss of generality
e € (R/I)*.

Let (¢1,...,¢,) € R™ be an e-quiddity cycle that maps to ¢ under k; we have co € R* because ¢o ¢ 1.
If [c1, ..., cn] = €id, then there exist f,g € R, h € R* such that

(IO T) = lenno el = ntemtennten) = (23501 1)

g cocg — 1 —Co
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Thus the entries ¢y, ¢2, c3 are uniquely determined by f, g, h:

co=—h, c1=0-f)/ca, ec3=(1+g)/co.
Since there are |13 possible Choicesﬂ for cy,...,c, that map to ¢y, . .., ¢,, we obtain w,, -|I|*~2 different
e-quiddity cycles of length n. O

As an example, we use the theorem to obtain closed formulae for (—1)-quiddity cycles:

Corollary 3.3. Let n € Ny with n # 2 (mod 4), p be a prime, and r € Nsg. Then the numbers of
sequences (¢1,...,¢n) € Z/p"Z such that [c1,...,c,] = —id are as follows.

(a) Forn =1 (mod 2) we have p»r—3)=1) ["T_l}pz sequences.

(b) For n =0 (mod 4) we have p(nf‘o’)(ril)(p%2 -1) [%Lﬂ sequences if p > 2.

Proof. This is Theorem for R =7Z/p"Z and I = (p). Note that for p = 2 and n even, the number
(71)"/2 is always equal to € = 1, so in this case the Theorem does not apply. O

Remark 3.4. In a finite local ring R, every element is either a unit or nilpotent. Indeed, let a € R. The
set {a' | i € N} is finite, so there exist 0 < m < n with minimal m such that ™ = a™. This implies
a™(a™"™ —1) =0. If m = 0, then a is a unit; otherwise, a” = 0 since a”~"™ — 1 is a unit. On the other
hand, if a is nilpotent, say a™ = 0, then (1 + a) Zzzol(fa)i =1.

3.2. Even length. In order to understand the missing cases (even length), we need to understand those
cycles in which all entries lie in the maximal ideal.

Definition 3.5. Let R be a finite commutative local ring with maximal ideal I < R. For n > 2 and
z € R, denote

(5) Oom i ={(c1,...,0n) €I | [c1,...,cn] = A2}
Lemma 3.6. If z € R and n > 2, then 0., # () implies that n is even and z € (—1)"/? + 1.

Proof. If (¢1,...,¢,) € I™ such that [cq,...,¢,] = A, then in R/I, [0,...,0] = A.4;. But the com-
putation of [0,...,0] in the proof of Theorem Equation 4 shows that z + I = (—1)*/2 + I and
n =0 (mod 2). O

Theorem 3.7. Let R be a finite commutative local ring with mazimal ideal I < R, ¢ € {£1} C R,
z€e+1C R, andn € Nug with n even. Then

lo2m| = Z |0 n—2] - {(w,v) € I xI|uv—1=ux/z}|.

rE—e+1
Proof. Let (¢,u,v,b,...) € I" be a sequence with [c,u,v,b,...] = A,. Since z := uv — 1 is a unit, using
Equation from Lemma we can reduce the sequence to a sequence of length n — 1 via
A = [eu,v, b ] =[c+(1—v)/(uv—1),uv—1,b+ (1 —u)/(uv —1),...]

= [ce+(1—-v)/z,z,b+ (1 —u)/x,..].
Since n — 1 is odd, we may apply Lemma and Equation from Lemma
Aoz =[cx+ (1 —v),L,bx+(1—u),...]=[cx—v,bx —u,..].
Thus the resulting sequence (cx — v,bx — u,...) is contained in o,, ,_2 because it consists of elements
of I; note that xz € —e + I. We obtain a map
p:0zn — U Oxmn—2-
rE—e+1

Conversely, take a sequence (e, f,...) in 0, p_2 for some z € —e + I. Then by Equation from

Lemma [2:2]

Ae=le, f,..]=le+1,1,f+1,..].
With Lemma[2.5|and y := z/z € —1+1,

A= [le+1)/y,y, (f +1)/y,...].

INote that any such choice implies h € R* since h = —¢z # 0.
4



Now if uv — 1 =y = z/z for u,v € I, then by Lemma
A = [(e+1)/(wo—=1),uv—=1,(f+1)/(uv —1),...]
[(e+v)/(uv —1),u,v,(f +u)/(uv—1),...].
This last sequence is in o, ,; thus the above map p is surjective. The preimages of p are parametrized
by 0zn-2, ¢ € R* and u,v € I with uv — 1 = x/z. Moreover, the entries with labels 3,...,n — 2 in the
parameters ensure that the preimages are unique; p is injective. O

4. QUIDDITY CYCLES MODULO A POWER OF A PRIME

We now concentrate on the case of the local ring R := Z/p"Z for p a prime and r € N. The maximal
ideal is I = pR. Write v,(a) for the largest k such that a =0 (mod p*); we agree that v,(0) = r.

Lemma 4.1. Fora € R\ R*, we let M := {(u,v) € I X I | uwv = a}. Then,
M| = {(T —1p" = (r—2)p"" fa=0,
(" =p" " (pla) = 1) ifa#0.
Proof. Let a = 0. Note that uv =0 (mod p") if and only if v,(u) +v,(v) > r. Consider the ring R as an

ordered set. Only each p-th element is divisible by p. Hence, precisely |R| — % elements are divisible by
1 = p° but not by p. Moreover, precisely % — %l elements are divisible by p but not by p?. Continuing

this way, we deduce that, for 1 <i<r—1,

o e T | wple) =if =p " = p,

as |R| = p". Therefore,

{(u,v) € M [ vp(u) =i} = ("~ = p"~"71) -,
due to the following argument. There are exactly n := (p° — p*~1) + (p*~!
with v,(v) > r — i wherefore we obtain that n = p’, as v,(0) = r. Furthermore, if u = 0, there are p
possible choices for v such that (u,v) € M. This yields

—p=2) + ... elements v in [
r—1

r—1 1

r—1
r— —1 r—i— 7 r— r—1 1 7 r— T
Ml=1-p" " +> @ =p ) p =p + > p (=)' =p P (r=1)-p (1=,
i=1 i=1

The assertion follows. Next, let a # 0. Note that v,(a) > 1. We write
a:al.pl/l?(a)’ u:ul.pup(u)7 v:vl.pyp(v),
where (u1,p) =1 = (v1,p) = (a1,p). Then, the equation uv = a becomes

uy = ulvlp’/p(u)+”p(v) — alpl’p(a)’

We can express v,(a) in exactly v,(a) — 1 ways as the sum of the two positive integers v, (u) and v,(v).
In each such case, we may fix u; and obtain v; = ul_l -a as a possible solution of the equation uv = a. If
vp(u) = i then there are exactly p"~* — p"~*~1 different choices for u and hence for u;. To our particular
solution v1 = Uparticular chosen above we have to add all possibilities for v; which yield a total valuation
of wv which is larger than or equal to r, that is, all other numbers ¥; such that v,(%;) > r —i. In total,
there are p’ such numbers, as v,(0) = r.

Altogether, there are

vp(a)—1
M= > =) g =" = ) (pla) — 1)
i=1
solutions in this case. O

Lemma 4.2. For evenn and z,2' € R,

VP(Z - (_1)n/2) = V;D(z/ - (_1)n/2) - |Uz,n‘ = ‘O'z’,n .

Proof. We proceed by induction over n. If n = 2, then since

[C C]: 6102—1 —C1
1,62 o -1 )

we get that if [c1,co] = A, for some z, then ¢; = ¢o = 0 and z = —1. Thus |o, 2| = 0 for all z with
vp(z — (=1)"?) > 0 and |o_; 5| = 1.



Recall from Theorem that for z € e + 1 C R*, and even n € Ny3 we have

oeml = Y lowm—al- {(w,v) €T T |uv—1=uz/z}].
xe—e+1

We fix 2 := —e + bp® and let z =ec 4 ap’. Then, 2~ ' =e—ap’ +... —... = e+ ap’ for some a which is
coprime to p. We inspect the different cases: first, assume k # j. We have

14+ az7 b =14 (—e+bp")(e + ap’) = bep® — aep’ + abp®Hi.

Hence, v,(1 + 227 1) = min{v,(z + ¢),v,(z — €)} if vp(x +€) # vp(2 — €). Next, assume v,(z +¢) =
vp(z — e) = k. In this case, we may write 27! = £ 4 apf. We take another element 2’ € ¢ 4+ I with
the property that 2/ ' = 4+ a’p*. We let 2/ := —e + b'p* where I is vet to be specified. Then,
vp(zz7t + 1) = k+v,(e(b— a) + abp®) and vy (/2" " +1) = k+ v,(e(b — a’) + a/b'p*). Now, we choose

V=da 227"
Hence,
%(E(b/ —a') +ad't'p*) = e(b—a) + abp”
and therefore
vp(e(t) — ') + d'V'p*) = v, (e(b — a) + abp®).
Next, we set Ny, :={w € —e + I | vp(w + €) = k} and define the map ¢, . : Ny — N}, by

0o (1) = 0o (—e+ bpF) = —e + VPP = — + (a2 27 D)pk = 2.
As an inverse is given by
-1

P = o L (e + VDY) = — + (22 ad W),

the map ¢, ./ is bijective. O
Definition 4.3. In view of Lemma [£.1] and Lemma [£.2] we will write

N o= = (=2t =
Ha): {(p’“—p’“‘l)(j—l) j<r

and 0y,(£) 1= [0(_1yn/24p¢ ,|- Moreover, let

. 1 j=r
n; = |{a €R ‘ Vp(a) *]}| - {pr_j _pr_j_l ] <r
for 5 =0,...,7.
Theorem 4.4. The numbers o,({), n € N, £ =1,...,r — 1 satisfy:

l—1 T
o) = Yo noa2u()+ 3 nia-2(u(t)

j=0+1

ton2(0) | w@O@ =2+ > ) |,
Jj=L+1

on(r) = Z njon—2(3)p(f)-
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Proof. With the new notation, Theorem [3.7] translates to

onl) = EZHan_z(up(x +8)) - ulvp(z/(e +p") +1))
= ;0%2(%(@“)) u(vp((—e +2) - (e + ) +1))
- ZZIaH(up(x)) - lvp(—ep’ + ez + ap"))
_ xzelan_m(x/(e 1)) - ilvp(—2p’ + )
_ wz;an_m(z)) (e — ep)

where ¢ = (—1)"/2. In the last sum we distinguish the cases v,(z) < ¢, v,(x) > ¢, v,(x) = £. Note

that the case £ = r has to be treated separately (see below), so assume ¢ < r first. If v,(x) < ¢, then
vp(z — ep?) = vp(); if vp(x) > £, then vy(z — ept) = £:

—1 r
on(l) = Y mjona(uG)+ Y njon_a(i)ul)
j=1 Jj={+1

+O'n_2(€)z_: Z €+Vp (pw+y—e)).

z=(y+pw)pt, vp(z)=¢L

In the third sum we consider the cases y # ¢ and y = &:

£—1 r
oul®) = Y mion2(uli)+ D i a0

j=t+1
i1
tono(0) [ p@O@ =2+ Y pl+ 1+ vp(w))
w=0

y=¢

-1 r
= anan,g(j)u(j)—&- Z n;on—2(5) ()
j=1

j=0+1

+ona(0) [ wO@—2p"" "+ Y nn(i)
J=0+1

If £ = r, we obtain the simpler formula

> nion 2 (i)l
j=1

because then v,(z — ep?) = v, (z). O

Lemma 4.5. Let p be a prime number, let 1 € N>g and let £ € {1,...,r —1}. Then, the following
assertions hold:

()Zpi: e,

m 7m (—1—m,)p+m,+pm+1
() 39970 = A,
@ % @iy ) (- 1) =
j=t+1
prfl(—Tp - 1) _p2r7272(_p _ gp 4 E) _p2r72(_p27r +p177‘) +p2r72(_p172 _|_p7£)'
Proof. (a) Direct verification using the geometric sum formula.

e



(b) For z € R\ {1} we have

T d [~ _. d (1—a™™
Z_ijlzdx(zx]):dx(a:—xl)

j=1 j=1
Therefore,
N _j d (1—z™™ 2™ ((=1 = m)z + m+ ™)
ZW :(_m).df — ) = 5 .
. T T (x—1)
The claim follows.
(¢) We have
r—1
DI —p ) - G- ) =" —p Zp (j—1)
j=t+1 j=0+1
) r—1 4
= (@ -p" Z]p ijj —(>op7=> p7
j=1 j=1
@) _ r-1y2 p‘“‘”(r —rp—14p)  p((L=Optlapth)  1-pttm 1-pt
(p—1)° (p—1)° p-1 p—1
= Y (= 14" —p (-1 - Op+ £+
- (-DA-p" )+ -1 -p" )]
r—1\21 —(r— - —
= @) "t —14p) —p (1= Op+ L+ + (- DT —p )]
r—1\21, —(r— —r —
= @) "t =) —p (1= Op+ O+ (- —p )]
= p T M=rpr—1)—p é(—p—€p+€)—pQT‘Q(—pQ‘”rpl‘T)+p2r‘2(—p1‘e+p“)
as claimed.
Lemma 4.6. Forr € N>y and £ =1,...,7r —1 we have:

pO)(p—2)p" 1+ Z nipu(j) = (0 — 1)p*=f — (20 = 3)p* ~1 4 (0 — 1)p* 2.
j=0+1

Proof. Using the definitions of ;1 and n; we obtain that our claim is equivalent to

B —p ) (f—1)-(p—2)-pr—tt

+ Z @ =TG- DL (= 1)p = (r—2)p" )

j=t+1
= (- 1)t (20— 3)pF L 4 (0 — 1)pPr 2,
By Lemma c) the left-hand side of the last equation is equal to

(P =p (=1 (p—2)-p !
b erp b —1) = P (—p— p+ ) — pP (= 4 )+ p 2 (—pt 4 ph)
+1-(r—1)p" —(r—2)p" 1
=" DU =D -2)+(p+Llp—0) —p+1]
+p T (mrp = 1) = p (T A ) L (r = 1)p = (= 2)p"
=p (=) = 3p+2) + lp— L+ 1)]
o e = g — e —p — 4 2p
=p 2 —3pl + 20 —p* +3p— 2+ pl — £+ 1]
=p 2 —pP — 2l + 0+ 3p—1)
= (0= 1)p¥ ™t — (20— )PP Ly (0 — 1)p* 2,
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Lemma 4.7. Let p be a prime number, let s € N>o and let m € N>3. Then, the following holds.

s—1
> p I = 1pma (G — 1)
j=2
B 1 (1 _ S)p4787m + (S _ 2)p3fsfm +p27m B (1 _ s)p(mfl)(Zfs) + (8 _ 2)p(m71)(178) 41
pm—2 -1 (p . 1)2 (pmfl _ 1)2 ’

Proof. We have

sl im1)1s P (-1 _1
D oI = (- 1) = ij lel)
j=2
s—1
: (P> —p M) (5 — 1)
j=2
2 m s 1 s—1 ) s—1 . ; s—1 L
= JP D Yl e D DY B S i)
j=2 p Jj=2 j=2

_ ' psle (—sp+s—1+p°) 1 lfp*”l_'_l
p’"‘2—1 (p—1)> p p—1 p

1 pm=D=)(_gpm=1 o {4 pm=Ds) | | _pm-Dl-s)
o pn—2 — 1 ( (pm—1 — 1)2 - pm—1 o pn—1 1 + pm1>
_oprm pi i s—sp—14pY) + (1 —p)(1—p7)
-l (p—1)7
1 p(m—l)(l—s)(_spm—l +s—1 +p(7n—1)s) + (1 _ pm_l)(l _ p(m—l)(l—s))
ol (pm=t—1)°
B p2om . S fosplTt —plms 41 —plos 4 p2s
el (v-1)°
1 _spm=D@=5) 4 (5 = [)pm-D1=5) 4 1 _ pm-1)(1=s5) | pm-1)(2-5)
pr2—1 (pm=t —1)?
1 L=s)p* "+ (s =2p* " +p* ™ (L= s)pm VT 4 (s - 2)pn VU 41
Tl ( (p—1)° - (pm—t —1)? )

O

Definition 4.8. We use the notation of g-numbers,

Il
<. 3
(]!
—

K

S

where the last equality requires q # 1.
Lemma 4.9. Let z € R\ {1} and let r € N. Then, the following equation holds:

(1—r)2> "+ (r—2)2'7" +1

po =1 =)z 42 r - 1],.

Proof. By polynomial long division, we obtain

- 1—g” !
i T —1 L

(A=r)2> "+ (=227 +1) /(z-1) =1 -r)z"" - T = (1 -7zt - 7;7:11

=1 —r)z' "+ =1 =r)z' " 42— 1],.

d



Lemma 4.10. Let p be a prime number, let r € N>3, and let x € RT \ {1}. Set

a=pa (@ =) (5 =) —p (@2 - 1) (5 - 1),
p p
3—r 27

(=)= + (r—2)

=

I

8
N
3
L
i
N

/N

o :prxr (‘CET _‘,Erfl o f + 1> _prflxr (le _xT*Q B g N 1>
p p p p

= (@ =22+ D)1 -2 P+ (r =227 P 2]

(PP = 2p) [P — e T 1 — 220
=(1=r)2> "4+ (r=2)zp* "+ ap—2(1 —r)p* " = 2(r —2)p* " —2p
+ (1 =)z P4 (r=2)z PP 2
—(p? = D@ =2 ot 41— 22177
+ 2p22 7" — 2pra® T 4 2prat T 4 2p — dpat T
=z ((1=rp* "+ (r=2p> " +p)+1-((-2)A—r)p* " =2(r—2)p* " —p* — 1)
+a T (L =r)p® "+ (r = 2)p* " 4 p) +at T (=0 + 1)(r — 2) + 2pr — dp)
+22 (= = 1)1 =) +2p — 2pr)

v = (I o 1)(£E2T71p177a T = 1,27’72p17r + .Z’rpil)(’r’pr o pr o ,,,prfl + 2pr71>

_ (xzrp1—r gt p2rlpler sl a2l g 2r 2l x'rp—l) )
Srp" —p" —rpT L 4 2p )

_ (xzr(p1—r) 2 (=2pt ) 4 22 2 () 2 (p 7 — 1) + 27 (1 —p_l)) ]
Srp" —p" —rpt L 4 2p )

_ $r+1(2rp7"—1 _ 3pr—1 _ Tpr—Z + 2pr—2 _ Tpr +pr)

2 7‘72)

(= — 2 3T 2 — 2
+ 27 2 pr—p—r+2)+2¥ (=2 + 20+ 2r —4) + 2 (pr —p —7 +2).
Hence,
B+y=a2> (1—r)p+(r—2)+p ' +pr—p—1+2)

Fa? T (=24 2r)p+4—2r — (PP )P T = 2pr + 2p 4 2r — 4)
+27 2 (1=r)p+r—2+p ' +pr—p—r+2)
+ " (pT_Q(—pQT +2p% —r 24 2pr —4p) +p" " 2(r —2—2rp+3p +rp? — p2))
+a2" T (p" A (—pP +rp® — L4+ r+2p—2pr) +p (=1 + 2+ 2rp — 3p — rp® +p?))

= 2 (L) 2 (—p (R 4 1)) + 22 Y) a2 (p? — p) + " 21— p)

= Q.

10



Theorem 4.11. The numbers o,(£), n even, £ =1,... 7 satisfy (for m > 2):

if €=1,
o2(0) = dup, os(0) =< (£ —1)(p" —p~1) if 1<t<r,
(r—1p" —(r—2)p "t if L=r.
0 if (=1,
oom(l) = p@m=dr—tm=2Fl-mpm=1 _\[f 1]  if 1<l<T,
pm I — 1]z — pm T — 2] s if £=r.
Proof. To begin with, we prove the base case. For £ € {1,...,r}, we have
-1+p* 0
)l = H(ere € 2 Lfevveal = (1572
71+pl
C1Co — 1 —C1 . . .
As [c1,c0) = . 1) we deduce that ¢; = ¢ = 0 such that there exists a solution if and only
) —
if £ = r in which case the solution is unique modulo p”. Similarly, for £ € {1,...,r}, we have

1+p* 0
loa(€)] = |{(c1,ca,c3,¢a) € I* | [e1,C2,C3,¢4] = ( 0 lJr1 Z)}
P

C1C2C3C4 — C1C4 — C3C4 — C1Co + 1  —cicoc3 +c1 + c3

we obtain
C2C3C4 — C4 — C2 —coc3 + 1 )’

AS [61762703703] = <

€102C3Cs — C1¢q — c3cqa — 102+ 1 ci(caes — 1)\ (1 +pt e
02(6304 — 1) —cocg + 1 B Cyq L /]

1+p

As coc3 — 1,¢c3¢4 — 1 € R*, we deduce that

Cq C3 2
6 co=——— and ¢ = ———— = c5c4 — C3.
( ) 2 0364—1 ! 6203—1 3™ 3
Hence, the two remaining equations c¢jcaczcy —c1cqy —c3cqg—crco+1 =1+ pf and —coc3+1 = ﬁ become
both equivalent to the equation p* = —cscy. Note that any choice of ¢3 and ¢4 uniquely determines ¢;

and ¢ modulo p” by @ For 2 < ¢ < r the claim follows now from Lemma and for ¢ = 1 the claim
follows from the fact that c3,c4 € 1.

Next, assume that 1 < £ < r and consider the right hand side of the recursion for n = 2m. The two
sums and the last summand are:

£—1
PIRCLAGIIC)

-1
_ Znjp(Zm73)r7j(m72)+17m(pm71 o 1)[] _ 1]pm_2 (pr . prfl)(j N 1)
j=2
—1
— Zp(Qm—3)r—j(m—2)+1—m—] <pm—1 _ 1)[] _ 1}1}’"*2 <pr _ pr—1)2(j _ 1)
j=2
! G-1D(m=2) _q
m—3)r—j(m— —m—J [ m— p T r— -
= ZP(2 r=jlm-2)+1 (p 1*1)T1(P —-Pp 1)2(]*1)
— P -
J
pm—l -1 -1 . .
_ W_l(ﬂ . py»_1>2p(2m—3)7»+1—m Zp—](m—l)(p(]—l)(m—Q) _ 1)(] _ 1)

Jj=2

p
pm—l B 1(pr _ pr—l)Zp(Zm—S)r+1—m _(é - 1)p4—l—m + (é B 2)p3—Z—m _|_p2—m
pr2 -1 (p—1)°

(( _ l)p(m—l)(Z—Z) + (( _ 2)p(m—1)(1—z) + 1)

(pmt —1)
11



r

> non(G)u()

j=0+1
r—1 )
_ Z njp(2m—3)r—j(m—2)+1—m(pm—l _ 1)[] _ 1]pm—2(pT _pr—l)(g _ 1)
Jj=t+1
+1, (U = ez = pU T T [ = 2] 2 ) (7 — ") (€ - 1)
r—1
_ Z p(2m73)r7j(mf2)+lfmfj(pmfl _ 1)[] _ 1]pm—2(pT 7prfl)2(£ B 1)
J=t+1
P = Uz = p T e = 22 (p7 = p ) (€ - 1)
-1 G-D(m=2) _ {
m—3)r—j(m— —_m—=j(,m— p r r—
Z p(2 3)r—j(m—2)+1 J(p 1_ 1)pm_T(p —p 1)2@ N 1)
J=0+1
(r—=1)(m—-2) _ 1 (r—=2)(m—2) _ 1
(m—1)rP _ (m—1)r—1P r_,r—1 1
+(p T p P )T =pTH)( 1)
prt -1 1,2 2 1 ) (1) m2
= W_l(pr —p (= )pBm At N i) (pUm D=2 )
p j=0+1
(r—1)(m—2) _ 1 (r—2)(m—2) _ 1
(m—1)rP _ (m—1)r—1P r o or—1 {—1
+(p ] p P — )P —=p" (- 1)
pm—l -1 , 12 (@m—3)rt1— 0 p—'r' _p—é—l p(l—m)r _p(l—m)(l—i-l)
B _ (-1 m—3)r+1—m m _
e 70" =P )= 1)p p - PR

m=2) _ | _1p(7“—2)(m—2) 1

p(m_l)rp(r—l)(
pm72 -1

_ plm=1)
pm7271 pm T

+( )" —p (= 1).

on(0) | @@ 2P+ > niul)

j=£+1

"

p(2 m—3)r—£(m—2)+1—m(pm—1 _ 1)[( - l]pm72 M(e) (p N 2)pr—2—1 + Z njﬂ(j)
j=0+1

p-Dm-2) _ 1

(2m—=3)r—(m—2)+1—m/ m—1 _ 1
p (p ) P

p@)(p=2p" "+ D nu())
j=E+1
p(ﬁfl)(m72) -1

pm72 -1
12

p(2 m73)r72(m72)+17m(pm71 _ 1) ((e _ 1)p2r7£ _ (2€ _ 3)p2r7£71 + (€ _ 1)p2r7€72) ]



With z 1= p™, y:=p", 2z :=p’, u = p™", v := p™* the equations become

T

-1
anan(j)u(j)+ Z njon () p(f)

j=t+1

+on () | wOp—2p" 1+ D nu)
j=t+1

_ pm—l -1 (pr o pr—l)2p(2m—3)r+1—m<_(g — 1)p4—€—m + (ﬁ — 2)p3—€—m + p2—m
pm2—1 (p—1)°
(f _ 1)p(m—1)(2—€) 4 (f _ 2)p(m—1)(1—€) 41
1 )

m—1 _ —r _ —f—1 (1=m)r _ ,(1—m)(f+1)
p 1 T r—1\2 (2m—-3)r+1—m 2-mP p p p
P = /1 _
+omE LT =) (= 1)p P pe—1 T
(r=1)(m=2) _ 1 (r=2)(m=2) _ 1
(m—l)rp o (m—l)r—lp r o or—1 (-1
+(p ez P = )" =P )= 1)
(2m—3)r—¢(m—2)+1—m m—1 p(l—l)(m—Q) -1 2r—{ 2r—£—1 2r—£—2
+p P =) (=1 = (20=3)p +((—1p )

- (e-1)<y_z> u(5 1) “gp:52‘1)

2 —1)p*  (—2)p%  p? U=z _ (¢=1)a?z
)\ o) G

u?(x — 1);2(ﬁ - )

Tz
vmy(% — 1)

p(2 m—1)r—4(m—1)—m (pm o 1)

—
*
—

p(mfl)(lfl) -1
p’m—l -1
_ p(2 mfl)rff(mfl)fm(pm _ 1)[( _ l]pm71 — O’n+2(€)

where (%) may be checked with a computer (e.g. with SAGE) since these are rational functions with
constant exponents. For the sake of completeness, we have included a proof in Appendix [6]

The case £ =1 follows from the fact that o4(1) = 0 and from Theorem as u(1) = 0.
Next, we consider the case ¢ = r. Accoring to Theorem [.4] we have to prove that

Ta(mr1)(r) 1= ™[ = Upmes = p"™" = 2y =Y no9m (§) ().
j=1
13



We compute the right-hand side of the previous equation:

j=1

4 (pm=Drp 1] s — plm DT, 2],)%2) ((r=1)p" = (r—2)p™Y)
r—1

= (7 —p ) pBm A (L IR e (- D) (T - ")
j=2

n p(m_l)T[T _ 1]p7"*2 _ p(m—l)r—l[,r, _ 2]pm72) . ((T _ 1)p7” _ (7“ — 2)pT—1)
r—1

T r—1\2 m=3)r+1—-m/_ m— —j(m— : :
= (p" —p' )" pEmTAEEm Tt )N [ — e (- 1)
j=2

N (p(mfl)r[r Az — I 2]pm_2) ((r=1)p" = (r=2)p"Y)

Lemgdm (p - 1)2(pm71 — 1)p2mr7r7m71 (1 — T)p47r7m + (r — 2)p37r7m +p27m
Pl (p—1)°

(1 —r)ptm=DE=7) 4 (p — 2)pm=-1D0-7) 4 1
(pm—l _ 1)2

n (p(m_l)T[T _ 1]pm72 _ p(m—l)r—l[r _ 2]pm72) . ((7« _ 1)pr _ (7“ — 2)p7"—1)

LemmZ® (p = 1)*(p" " = Dp>™ =t (1 —r)pt = 4 (e = 2)p7 T 4
pm.—2 _ 1 (p _ 1)2

B (1 — 'r')p(mfl)(lfr) +p(M71)(177‘) . [7‘ — 1]pm71
=1
+ (P = s = p I = 2a ) (0= 1 — (= 27
2mr—r—m—1
— W ((pm—l _ 1)[<1 _ r)p4—r—m 4 (’I“ _ 2)p3—r—m +p2—m}

_(p _ 1)2[(1 - r)p(m—l)(l—r) +p(m,—1)(1—r) [7" _ 1]pm71)])

+ (p(m—l)r[r _ 1]pm_2 _ p(m_l)r_l[r _ 2]pm_2) . ((r _ l)pr _ (r — 2)pr—1) .

Next, we set z := p™~!. Then, our equation becomes

(pfﬂ)r x2r r—2,.—1

(pz)"[r = 1]o — » [r—2. = % (@ =D[A =)z P>+ (r =227 PP a7 ]

TR

~(p = V(1 =)'+ 2 - 1))

+ (xr[r —1]= — %[r — 2]2> ((r=Dp" = (r—2)p"").

|8

Now, we replace the g-integers by fractions. Then, the last equation is equivalent to:

:L.?“—l -1 mr—Z -1 x2r—1pr—2
T.T =1, _ . _ _ -1, 3—r _ -1, 2—r -1
Pt = o (=)=’ + (r=2)a™ p* " + 27|
r—1 _ 1
_ _ 1 2 1 _ 1—r 1—7’"7/'
(p—1[(1 = r)at T 42t
(B -1 ()
T v . — D" — ) r—1 )
+<x oy y I ((r=1p" = (r=2)p"")

14



Next, we multiply both sides of the last equation by (z —1) - (3 — 1) and obtain:
T T L r—1,_r/( r— T r—1, r—
praa = 1) e (1) =y

(=TT + =227 + a7 (- VPl - DL~ )2t + 2t - 1))

+(z—1) (m ((i)r_l - 1) - %T ((;)7-_2 - 1>> A(r=1)p" = (r=2)p" ).

The correctness of this last equation follows from Lemma 4.10 O

Theorem 4.12. Let R = Z/p"Z for a prime p and r € N, I = pR the mazimal ideal, n € Ns1 with n
even, and € € {£1}. Let w, be the number of e-quiddity cycles over R/I of length n. If p > 2 then the
number of e-quiddity cycles over R is

(@a = 1) U0 o) i o= (=),
Wy, - pr=H(=3) if e=—(—1)"2

If p =2 then the number of e-quiddity cycles over R is

(wp — 1) - plr=DO=3) L 5 (1) if &= (=1)"2,
(wn —1) - plr= D=3 if e =—(=1)"2

Proof. We proceed as in the proof of Theorem If kK : R — R/I is the canonical projection and
(c1,...,cn) is an e-quiddity cycle, then (k(c1),...,k(cn)) is a k(e)-quiddity cycle over R/I. For each
fixed e-quiddity cycle ¢ = (¢1,...,¢,) € (R/I)™, we count the number of e-quiddity cycles which project
to this cycle under x.

Since I is maximal, R/I is a field. Assume first that ¢ contains no unit, i.e. ¢ = (0,...,0). Then the
number of cycles which map to ¢ under & is o, (r) if e = (—1)"/2. If € # (—1)"/2, then there is no such
solution.

Otherwise ¢ # (0,...,0). There are w, — 1 such cases if ¢ = (—1)"/2; there are w, such cases if
e =—(—1)"? and p > 2; and w, — 1 such cases if ¢ = —(—1)"/? and p = 2 (note that w, also counts
(0,...,0) in this case): we may assume that there is an entry in ¢ which is a unit, after rotating the
cycle, without loss of generality ¢; € (R/I)*. Now the same argument as in the proof of Theorem
produces |[I|"73 = pr=D(=3) different e-quiddity cycles of length n in each case. (]

5. CYCLES IN RESIDUE CLASS RINGS
In this last section we present a recursion for the number of solutions
(7) Tgm = {(c1,...,¢cn) € R" | [c1,...,cn) = A and © = c2}|.

for R:=Z/p"Z, A € R?*? and n > 3. A sum over all x € R then gives a recursion for the number of
solutions [cy,...,c,] = A.

As an application one could recover the formulae from the previous sections; however, all in all this
would result in a longer proof than before. Since this section is less important, we omit some of the
technical proofs and leave them to the reader.

To count the different cases we need the following numbers.

Definition 5.1. For z,u € R, let

0 vp(u) > vp(z +1)
0 r+u€ R orx¢ R*
(9) Cou = rp" — (r—1)p—1 z+u=0

(" —p" Mpx+u) vy(r+u)>0and z+u#0
where v,(a) is the largest k such that a =0 (mod p*).

‘We obtain:
15



Proposition 5.2. Foru € R and n > 5, we have the recursion

(10) Tumn = Z ﬂ—z,nflfx,u + Wm,n72§m,u~

reERX
Proof. Let (c,u,v,b,d,...) be a sequence of length n. There are two cases:

(a) uv — 1 is a unit. Then we can reduce the sequence to a sequence of length n — 1 via
[c,u,v,b,...]=[c+ (1 —v)/(uv—1),uv —1,b+ (1 —u)/(uv—1),..]

(b) wv — 1 is not a unit. Then v is a unit and we can reduce the sequence to a sequence of length
n — 2 via
[e,u,v,b,d,...] =[c— (vb—2)/x,x,d — (uv — 2)/x, .. ]
for z = ((vb—1)(uwv — 1) — 1) /.
Thus every sequence comes from a shorter sequence after a step of type (a) or (b):

Assume we have a sequence of length n — 1 with second entry x € R*. If this sequence was obtained
via a reduction as in (a), then z = uv — 1 for some u,v € R. If the longer sequence is counted by 7, »,
then v,(u) > v,(z + 1) is excluded, and if v,(u) < v,(x + 1) then there are p*»(*) possible u € R that
satisfy = uv — 1. This explains the summand 7, ,_1&; . in the recursion.

Now assume that we have a sequence of length n — 2 with second entry x € R*. If this sequence was
obtained via a reduction as in (b), then z = ((vb—1)(uv —1) — 1) /v for some u,v,b € R such that uv —1
is not a unit. In particular, z +u = b(uv — 1) is not a unit. If z +u = 0, then there are rp” — (r — 1)p"~!
triple u,v, b that satisfy the relations; if v,(z +u) > 0 and z +u # 0, then we have (p” —p" Ny, (z +u)
solutions. This is why the summand 7, ,—2(; . appears in the recursion.

Note that the cases (a) and (b) always produce a unit at the second position in the shorter sequence,
thus we may sum over x € R* in the recursion. (]

Definition 5.3. We use the sets

(11) ug, = {d},

(12) ug; = {u|u=d (mod p'),u#d (mod p'tt)},

(13) e = {u|u#-1,0,1 (mod p)},

ford=-1,0,1landi=1,...,7—1. Since R=eU Udﬂ. uq,; is a disjoint union, we obtain an equivalence

relation on R. For v € R, denote (u) the class of u with respect to this relation, and write
(14) T(x),n = Z Tu,ms
ue(x)

(15) g(m),(u) = Z gv,wu

vE(z),we(u)

(16) C(T),(u) = Z Cv,uw

ve(z),we(u)

The following proposition and corollary explain why these definitions are useful. We omit the proofs
since they do not give any relevant new insights.

Proposition 5.4. For z,u € R and y1,y2 € (x),

Z §y1, Z é.yz 29 Z Cyl7 Z CZI27

z€(u) z€(u) z€(u) z€(u)
Corollary 5.5. For x,u € R, we have 7y, = |(¥)| - Tzn and
(17) Twn = D, |(71>|(7T<w>,n—1§<w>,(u) + (@) n—2G(@),(w))-
(z), z€RX
We can now compute the required values:
Proposition 5.6. Let m := |R*| = p" — p"~!. We have
Pt proitl <

le|=p" = 3p" ", n; = |ual = { o
1 r=1
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and for0<i,j<r,i1#j,0<k<r, k</{, x € R we obtain:

(18) S@yusre = @) [usirl,
(19) §e = @) el
(20) gu—l,buo,k = pk : |U—1,€ . |u0,k|a

and §(yy,(x) = 0 in all the remaining cases, and

(21) C’ufl,i,u,lyj = Cu*l,juul,i == mln(%]) -m - |'U,17i| . |'Ll,717j|7

(22) = min(i,)(p" " — ) (T i)
(23) Cul,iyu—l,i = Cuflyi,ulyi = (ipzr_i - (2i - 1)p27"_i_1 + ipzr_i_2)|u1’i|,

(24) — Z‘(p3T*2i _ p37"*2i*3) _ (3’L _ 1)(p3r72i71 7p3r72i—2),

(25) C’Ufl,ryu—l,r = C’Uf—lﬂwul,r = rpr - (’I‘ - 1)pT_11

(26) Cow = P Mel =P " =3,

and Cx),(») = 0 in all the remaining cases.

In principle, for a fixed matrix A, one can use the above formulae to obtain closed formulae for the
numbers of solutions.
As a last remark, we show that the sum over units satisfies a simpler recursion:

Proposition 5.7. Letn > 5 and

Tn = Z T(u),n-

(u), ueRX

Then

To= (0" =" )01 + 0¥ T

Proof. By Proposition [5.2] we have

Tn = E ﬂw,nflgx,u + Wm,n72C$,u
u,rERX
= § Ten—1 § €w,u + Te,n—2 E C:v,u-
TERX ueRX ueRX

For the first sum we get > px o1 yepx Seu = (P —p" 1) Y zerx Ten—1 because &, = 1if u is
a unit. The second sum is

r—1
Z Tx,n—2 Z Cz,u = Z Ten—1 (TPT - (T - 1)pril) + Z (pr — prfl)nkk
TERX ueRx zERX u=—=z k=1 vp(zt+u)=k

2r—1
= E Te,n—1P .

reERX

17



6. APPENDIX

Proposition 6.1. Let p be a prime number, let x € R\ {0, p, £,/p}, let u,v,y,z € R\ {0}, and let £ € N.
Then, the following equation holds:

uw?(z—1)z (B2 —1) U(%—l) u<p:;§—1)
vy (% - 1) -1 ( Z) y
(L o s ) L )

— 2 32 _ 2 2,
((5 Zl)y _ (2fpj)y T (szlly )pu222 (% _ ) (222 _ 1)
vay? (p% - 1)

2 —1)pd (0—2)p3 2 =2z (£-1)z?z
(o 1) (5 ) (St
r) \» r—1)° (z-1)°

Proof. We multiply both sides of the equation by vpzy? (% — 1) (l — 1) and obtain the following
equivalent assertion:

py? <px21) wd(z — 1)z (%70
()
SRTEA N A

() (S e (D) ()

— Tz _ 1322
T 9 y 2/ %_%_% (€p2v) _(€p12)v L1
— vp ——1 pu y— = ——1 3 i ]

p

This is equivalent to

()
= o(E-1) - vuto- vuttu— ) - (2= 1) (B - ) -1 (4- )

2 p2 2_% zy _ pz
+ v(x—1> (0 =Py (p—1)° (y )— u__ v

p z(1 —p) p—z

T 2 (5—1)p4 o (Z—2)p3 . i ({=2)zz ([712)122
- v< - 1) w?y?(p — 1)° £2 &2 S L
p

G-

+1




This is equivalent to

T \y =z
+ ol p = w0 - p) (- 1)
+ (z—p) <(€ 721)3/2 _ ng)yQ + C p212)y2> (x —p) <p2fv - u2z2>

N (; _ 1>2u2y2 (p; MGG 1>p4) 1) <<g- Doz (= as

Tz Tz

We simplify some parentheses and obtain:

y? (;2 - 1) w2z — 1) (”i” - Zp)
= o (2-1) - vuo- vuru- ) - (- 1)u (B - ) -0 (- 1)

2

+ v(i - 1)2(4 — 1u2y(1 —p)p—g - v<x - 1>2(z — D1 - p)

P Tz

(= p) (0= 1)(1 = p)*uwy® — gcc —p)(£ — Duy2(1 - p)?
_ 2 _ 2 _ 2 2u2v
b @—p) ((5 Dy* _ (20-3)y"  (£- Dy ) (@ —p) (p . u222>

z pz P32z

N v(ﬂc _ 1)2u2y2 (p; NG NG 1)p4> 1) ((f— ez (-1

P Tz Tz P P

We multiply both sides of the previous equation by p?zz and obtain:

wz(z — 1)y?(z — p?) (p*v — zp)

przv(z — p)(f = Dy(p — Du(p?u — zy?) — zo(x — pu(p'u — 2*y*) (0 = V)y(p — 1)
vz(z — p)* (€ — Duly(1 — p)p® — v(x — p)* (£ — Duy?(1 — p)p*
va(z —p)(0 = 1)(1 — p)*ua?y® — pr2?(x — p)(¢ — 1)u?y*(1 — p)*
(x —p) (P*(0 = V)y* = p(20 = 3)y* + (€ — 1)y°) (x — p)(pP*u’v — u?2x)
(@ —p)*uty? (P*z + (- 2)p° — (€ — 1)p?)
- zz*yP(p—1)° ((€ = 2)pzz — (£ — )2z + p™v) .
After rearrangement, this equation becomes:
w?z(z — 1)y (z — p*)(p*v — zpa)

= p?zo(r — )2u2y2 p2ozzuty®(p — 1)2
+((=2) PPz —p)’ —p2uly’ (p - 1)7]

—(20-3) [py*(z —p)*(pPuPv — uP2 )]

+ o+ + +

+ (£ =1)-  [pryzuv(z — p)(p — 1)(p*u — zy?) — zuvy(p — 1)(z — p)(p*u — 2°y?)]
+ ((=1) [PPuPoyz(1 —p)(z —p)” = p*uloy* (1 - p)(z — p)’]

+(=1) [PyPru(l - p)*(z - p) - pry**u* (1 - p)*(x — p)]

+((=1) [P+ )Pz —p)’pPuie — (0 + 1)y’ (v — p) u’2 2]

+(0-1) [2%22PP(p - 1) - plyPuu(z — p)?).

This last equation follows from the Lemma below, as was to be verified.

Lemma 6.2. Let p be a prime number, let x,y,z,u,v € R, and let £ € N. Then, the following hold.
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(a) We have
pu’y? (p2v(p - x)2 + x22 (pQ(JZ —2) + 2px — 22% + J;))

[pryzuv(a —p)(p — 1) (p*u — zy®) — zuvy(p — 1)(x — p)(p'u — 2%y*)]
[Puvyz(1 - p)(x — p)* — p*uvy?(1 — p)(z — p)°]

[:c2y3zuv(1 —p)*(z — p) — pry?22uP(1 — p)*(x — p)]

[(P* +1)y° P)2PQU2U (p* 4+ 1)y (x — p)2u2z2m]

[x3z2u2y2( L2~ phutu(s — p)?).

+ 4+ + +

(b) We have
2.2 2 2

pry“z°u (pzx—p —x2+3:)
(—1)- [quyz (p2v(p — ) + 222 (p2(x —2) 4 2pz — 22 + x))]
- (2¢-3)- {pr(aﬁ —p)*(p*uPv — u2z2x)}

+ (t-2)- [p3u2vy2(x —p)? — pa?2uyP (p - 1)2} :

(c) We have

w?z(x — 1)y?(z — p?)(p*v — 2pz)
—  pry?tu (pzx R z)
+ p?av(x — p)2u2y2 — p2uzzuty?(p — 1)2
Proof. Direct computation. O
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